8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Подвижные и неподвижные детали грм


Газораспределительный механизм двигателя (ГРМ) | Газораспределительный механизм (ГРМ)

Видео: Принцип работы газораспределительного механизма. Ремень ГРМ. Ресурс, когда менять. Цепь или ремень ГРМ. Что лучше и надежнее. Растянутая цепь ГРМ — симптомы

Что такое газораспределительный механизм (ГРМ)?

Газораспределительный механизм (ГРМ) — это механизм предназначенный для впуска в цилиндры двигателя свежего заряда (горючей смеси в классических бензиновых двигателях или воздуха в дизелях) и выпуска отработавших газов в соответствии с рабочим циклом, а также для обеспечения надежной изоляции камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.

В зависимости от вида устройств, осуществляющих впуск заряда и выпуск отработавших газов, различают два типа механизмов газораспределения:

  • клапанный
  • золотниковый

Клапанный механизм наиболее широко распространен и используется во всех четырехтактных двигателях. Возможно верхнее и нижнее расположение клапанов. Верхнее расположение в настоящее время применяется чаще, так как в этом случае процесс газообмена протекает эффективнее. Характерные конструкции газораспределительных механизмов с верхним расположением клапанов представлены на рисунке.

Из чего состоит газораспределительный механизм (ГРМ) двигателя?

Основными элементами газораспределительного механизма являются:

  • распределительный вал
  • впускные и выпускные клапаны с пружинами, крепежными деталями и направляющими втулками
  • привод распределительного вала
  • также детали (толкатели, штанги, коромысла и др.), обеспечивающие передачу перемещения от распределительного вала к клапанам

У V-образных двигателей основная деталь рассматриваемого механизма — распределительный вал — может иметь как нижнее, так и верхнее расположение. При нижнем расположении (рис. а) распределительный вал 7, размещенный в блок-картере, приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи, обычно содержащей одну пару цилиндрических или конических шестерен (возможно применение и нескольких пар шестерен).

У четырехтактного двигателя передаточное отношение привода равно двум, т.е. распределительный вал вращается вдвое медленнее коленчатого. При вращении распределительный вал с помощью кулачков перемещает толкатели 2 и штанги 3. Последние поворачивают коромысла 5 относительно оси 4. В то же время противоположные концы коромысел воздействуют на клапаны 7, перемещая их вниз и преодолевая при этом сопротивление пружин 6. Расположение кулачков на распределительном валу и их форму выбирают так, чтобы впускные и выпускные клапаны открывались и закрывались в строго определенные моменты согласно рабочему циклу двигателя.

Рис. Газораспределительные механизмы с верхним расположением клапанов:
а — с нижним расположением распределительного вала: 1 — распределительный вал; 2 — толкатель; 3 — штанга; 4 — ось коромысел; 5 — коромысло; 6 — пружина; 7 — клапан; б — с верхним расположением распределительного вала: 1 — винт; 2 — контргайка; 3 — коромысла; 4 — распределительный вал

У рядных верхнеклапанных двигателей и V-образных двигателей с четырьмя клапанами на цилиндр распределительный вал (валы) находится в головке блока, в непосредственной близости от клапанов (рис. б). Поскольку при верхнем расположении распределительного вала расстояние между его осью и осью коленчатого вала оказывается значительным, для приведения распределительного вала во вращение обычно используют цепную передачу. У двигателей сравнительно малой мощности можно также применять зубчатый ремень.

Распределительные валы мощных V-образных дизелей приводятся во вращение с помощью зубчатой передачи, у которой число пар конических шестерен может составлять две и более. При верхнем расположении распределительного вала уменьшается число передаточных деталей. Например, в механизме, представленном на рис. б, отсутствуют толкатели и штанги. Распределительный вал 4 непосредственно воздействует на коромысла 3, которые, в свою очередь, перемещают клапаны.

При работе двигателя детали газораспределительного механизма нагреваются (наиболее сильно — клапаны) и, следовательно, расширяются и удлиняются. Чтобы обеспечить возможность удлинения стержня клапана при его нагреве без нарушения плотности посадки головки клапана в седле, между отдельными деталями газораспределительного механизма у непрогретого двигателя должен быть зазор (например, между стержнем клапана и концом коромысла). Регулировать этот зазор можно различными способами, например с помощью винта 1 (см. рис. б), самоотвинчивание которого предотвращает контргайка 2. Чтобы исключить необходимость в регулировке зазора и уменьшить шумность двигателя в газораспределительных механизмах многих современных двигателей используются гидравлические толкатели. В эти толкатели встроены гидрокомпенсаторы, изменяющие их длину под действием давления масла, которое специально подается из смазочной системы двигателя. Клапан, его направляющая втулка, пружина и опорная шайба с деталями ее крепления образуют клапанную группу газораспределительного механизма.

Клапан состоит из головки и стержня, между которыми для уменьшения сопротивления движению газов выполнен плавный переход. Головка клапана имеет шлифованную конусную рабочую поверхность — фаску, по которой клапан плотно прилегает к седлу. Для крепления опорной шайбы пружины конец стержня клапана снабжен канавкой. В некоторых случаях для улучшения отвода теплоты от головки выпускного клапана стержень со стороны головки выполняют полым и вводят в него жидкий металлический натрий.

Клапаны изготавливают высадкой из стального прутка с последующей механической и термической обработкой. Материалом для них служит износо- и жаростойкая сталь. Иногда головку и стержень выпускного клапана выполняют из разных марок стали, а затем соединяют сваркой. Торец стержня клапана дополнительно закаливают для повышения твердости и износостойкости. В некоторых случаях на фаску выпускного клапана для увеличения его долговечности наплавляют особо жаростойкий сплав.

Каждый цилиндр двигателя имеет, как минимум, два клапана — впускной и выпускной. Однако в настоящее время наметилась тенденция к увеличению числа клапанов на цилиндр. Все шире применяются двигатели с тремя (два впускных и один выпускной) и четырьмя (два впускных и два выпускных) клапанами. При наличии одного впускного и одного выпускного клапанов первый имеет большую головку. Это необходимо для лучшего наполнения цилиндра свежим зарядом.

Направляющая втулка, через которую проходит стержень клапана, обеспечивает его точную посадку в седло. Стержень имеет высокоточное сопряжение с втулкой (зазор составляет 0,05… 0,12 мм). Направляющие втулки изготавливают из чугуна или спеченного пористого материала, который может быть пропитан смазочным маслом.

Клапанная пружина удерживает клапан в закрытом положении, обеспечивая его плотную посадку в седле. Пружины изготавливают методом холодной навивки из специальной стальной, термически обработанной проволоки с последующей дробеструйной обработкой, что увеличивает их долговечность. Иногда для предотвращения появления резонансных колебаний используют пружины с переменным шагом витков.

Опорная шайба удерживает пружину в сжатом состоянии. Крепление стержня клапана к опорной шайбе осуществляется с помощью конических разрезных сухарей, входящих в выточку на стержне.

Седло клапана, в которое он садится фаской головки, у верхнеклапанного двигателя расположено в головке цилиндров. Обычно седла выпускных, а иногда и впусковых клапанов, выполняют в виде вставных колец и наглухо запрессовывают в выточки головки цилиндров. Вставные кольца изготавливают из жаростойкой стали, специального чугуна или спеченного материала.

Передаточные детали газораспределительного механизма обеспечивают передачу усилия от распределительного вала к стержням клапанов. К таким деталям относятся:

  • толкатели
  • штанги
  • коромысла

Толкатели передают осевое усилие от кулачков распределительного вала на штанги или стержни клапанов. Они могут быть плоскими, грибовидными, цилиндрическими или рычажными. Их изготавливают из стали или чугуна. Для повышения твердости и износостойкости рабочие поверхности толкателей упрочняют, а затем шлифуют.

Штанги служат для передачи усилий от толкателей к коромыслам при нижнем расположении распределительного вала в верхнеклапанном двигателе (см. рис. а). Штанги изготавливают из стали или алюминиевого сплава, придавая им форму трубки. На концах штанг крепят стальные наконечники со сферическими поверхностями, имеющими высокую твердость. Нижними концами штанги упираются в гнезда толкателей, а верхними — в регулировочные винты коромысел.

Коромысла предназначены для изменения направления и величины усилий, передаваемых на стержни клапанов. Коромысла шарнирно устанавливают на осях, которые крепятся к головке цилиндров. На одном конце коромысла может быть установлен регулировочный винт, который позволяет изменять зазор в газораспределительном механизме. Материалом для коромысла служит сталь или ковкий чугун. Рабочие поверхности коромысла закаливают, а затем шлифуют.

Распределительный вал служит для своевременного открытия и закрытия клапанов при помощи кулачков. Конструкция распределительного вала зависит от типа двигателя, числа цилиндров и клапанов, а также типа привода. Характерные конструкции распределительных валов представлены на рисунке. Любой распределительный вал имеет кулачки впускных 2 и выпускных 4 клапанов, а также опорные шейки 2. Распределительный вал бензинового карбюраторного двигателя снабжен также винтовой шестерней 5 привода масляного насоса и распределителя зажигания и эксцентриком 3, приводящим в действие топливный насос. Число кулачков соответствует общему числу клапанов, которые обслуживаются данным валом. Число опорных шеек чаще всего равно числу коренных шеек коленчатого вала. В рядном четырех- цилиндровом двигателе вершины одноименных кулачков располагаются под углом 90° (рис. а), в рядном шестицилиндровом — под углом 60° (рис. б), а в V-образном восьмицилиндровом — под углом 45° (рис. в). Угол установки разноименных кулачков зависит от фаз газораспределения. Вершины кулачков располагают в соответствии с принятым для двигателя порядком работы с учетом направления вращения вала. В качестве подшипников для распределительного вала чаще всего применяют запрессованные в картер (при нижнем расположении) или головку цилиндров (при верхнем расположении) тонкостенные биметалические или триметаллические втулки. Одна из опорных шеек вала (обычно передняя) снабжена фиксирующим устройством для предотвращения его осевых перемещений. Для смазывания опорных шеек к ним подается масло под давлением из общей смазочной системы двигателя. При верхнем расположении распределительного вала в его теле сверлят осевое отверстие, по которому масло поступает ко всем опорным шейкам и кулачкам.

Рис. Распределительные валы рядного четырехцилиндрового (а), рядного шестицилиндрового (б) и V-образного восьмицилиндрового (в) двигателей со схемами расположения кулачков:
1 — опорная шейка; 2, 4 — кулачки впускных и выпускных клапанов; 3 — эксцентрик привода топливного насоса; 5 — винтовая шестерня привода масляного насоса

Видео: Принцип работы ГРМ

java - в чем разница между фиксированной ставкой и фиксированной задержкой в ​​расписании весны?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама Обратитесь к разработчикам и технологам со всего мира
  6. О компании

Загрузка…

  1. Авторизоваться зарегистрироваться
.

Фиксированные и подвижные тиски | Advanced Machine & Engineering Co.

Фиксированные и подвижные тиски | Advanced Machine & Engineering Co. Запрос цитаты

Чем мы можем вам помочь?

  • Черная оксидная отделка
  • Десять прецизионных отверстий втулки (.5007 / .5013 или .6257 / .6263) позволяют перемещать тиски на 1 дюйм.
  • Минимальная толщина листа 5/16 дюйма для торцевого фрезерования при использовании более высокого листа
  • Разработан для использования с фиксированными тисками
  • Два прецизионных дюбеля используются для фиксации тисков на стандартных опорных решетках
    • Установочный винт системы 1/2 ”: AMF-87994
    • Системный фиксирующий винт 5/8 ”: AMF-87883

Фиксированные и подвижные тиски

  • Подвижные тиски

  • Фиксированные тиски

  • Принадлежности для разъемных тисков

Фиксированные и подвижные тиски

Узнайте, как продукты AME помогли улучшить производство на 40% Учить больше " .

% PDF-1.3 % 372 0 объект > endobj xref 372 29 0000000016 00000 н. 0000000931 00000 н. 0000002535 00000 н. 0000002693 00000 н. 0000002964 00000 н. 0000003166 00000 п. 0000003207 00000 н. 0000003259 00000 н. 0000004344 00000 п. 0000004396 00000 н. 0000004606 00000 н. 0000005291 00000 п. 0000007174 00000 н. 0000007457 00000 н. 0000007679 00000 н. 0000007868 00000 н. 0000008211 00000 н. 0000008281 00000 п. 0000008487 00000 н. 0000008687 00000 н. 0000009368 00000 н. 0000010051 00000 п. 0000010231 00000 п. 0000010371 00000 п. 0000013046 00000 п. 0000013145 00000 п. 0000013413 00000 п. 0000001022 00000 н. 0000002512 00000 н. трейлер ] >> startxref 0 %% EOF 373 0 объект > endobj 399 0 объект > поток HU [lU> 3s23; 3giζR.Qgi Qe1ufxH (dj] 5n # l:] YOu3B% Q # jY '+ m | Upj% * S & ȰѲ s [6Il | +} f'EL4u ​​* -

.

19+ Инновации в машиностроении, которые помогли определить современную механику

Машиностроение - очень обширная дисциплина. Его широта частично объясняется необходимостью охватывать проектирование и производство практически всего в движущейся системе.

Это варьируется от мельчайших компонентов системы до готовой, иногда огромной машины в целом. На протяжении всей истории некоторые инновации определяли механику и современную машину, следующие изобретения являются яркими примерами.

СВЯЗАННЫЕ: 35 ИЗОБРЕТЕНИЙ, ИЗМЕНИВШИХ МИР

Эти инженерные инновации простираются от любой из классических «простых машин» до сложных концепций, таких как полет. Этот список далеко не исчерпывающий и в произвольном порядке.

1. Aeolipile был ранней паровой реакционной турбиной.

Источник: Gts-tg / Wikimedia Commons

Aeolipile был первым в мире вращающимся паровым двигателем или, более технически правильным, паровой реакционной турбиной.Он был изобретен великим Героном Александрийским в году 1-го века нашей эры года и подробно описан в своей книге Pneumatica .

Это относительно простое устройство работает, нагревая резервуар с водой внутри устройства для генерации пара. Затем пар проходит через одну из медных опор к вращающейся латунной сфере.

Как только пар достигает сферы, он выходит через одно из двух сопел на концах двух маленьких, направленных друг напротив друга рычагов.Выходящий пар создает тягу и заставляет шар вращаться.

Основной принцип прост, но настоящая гениальность устройства заключается в том, что только один из поддерживающих рычагов пропускает пар к сфере (через подшипник скольжения).

Это толкает шар против другой, «твердой», поддерживая руку, которая также имеет упорный подшипник. Сплошное плечо включает коническую точку, которая упирается в соответствующее углубление на поверхности сферы. Эта комбинация удерживает сферу на месте, пока она вращается.

2. Колесо и ось - мощная простая машина

Источник: Vikiçizer / Wikimedia Commons

В машиностроении очень мало инноваций, которые оказали такое же влияние, как колесо и ось. Без них современный мир выглядел бы совсем иначе.

Колесо и ось - одна из шести простых машин, определенных в древности и расширенных в эпоху Возрождения.

Первые изображения колесных транспортных средств появляются на глиняном горшке Bronocice из Польши и датируются примерно 4000 г. до н.э. г.На горшке четко изображена какая-то повозка с четырьмя колесами, установленными на двух осях.

Самое раннее фактическое свидетельство физической комбинации колеса и оси происходит из Словении и датируется примерно 3360-3030 годами до нашей эры.

Изобретение колеса и оси буквально изменило мир и было неизменной особенностью транспортных средств человека в течение последних 6000 лет, и, вероятно, так и останется в будущем.

3. Ветряные мельницы начали заменять рабочую силу.

Модель «персидской» ветряной мельницы с вертикальным парусом, Источник: Saupreiß / Wikimedia Commons

Ветряные мельницы - это невероятно гениальные устройства, которые могут преобразовывать энергию ветра в полезную механическую работу.Это достигается за счет использования больших «парусов», обычно сделанных из дерева, для передачи вращающей силы на главный вал. Это, в свою очередь, можно использовать для работы, например, для измельчения муки.

Персы были одними из первых людей, которые использовали силу ветра для работы, когда они начали строить первые ветряные мельницы в Иране и Афганистане примерно в г., 7 веке нашей эры, г. н.э.

Эти ранние ветряные мельницы состояли из парусов, расходящихся по вертикальной оси внутри здания, с двумя большими отверстиями для входа и выхода ветра, диаметрально противоположными друг другу.Мельницы использовались для прямого привода отдельных пар жерновов без использования шестерен.

Они были одним из первых средств, с помощью которых цивилизации смогли напрямую заменить людей машинами в качестве основного источника энергии.

Ветряные мельницы будут получать все большее распространение по всей Европе в средние века и оставались обычным явлением вплоть до 19 века.

Развитие паровой энергии во время промышленной революции привело к окончательному упадку ветряных мельниц.

4. Шкивы упрощают подъем.

Источник: GK Bloemsma / Wikimedia Commons

Шкивы представляют собой одно или несколько колес на оси или валу, которые поддерживают движение и изменение направления троса или ремня (что обычно тугая). Они передают мощность между валом и кабелем и обеспечивают механическое преимущество, которое идеально подходит для подъема тяжелых предметов.

Шкивы бывают различных типов:

- фиксированный шкив имеет ось, установленный на подшипниках, прикрепленных к опорной конструкции

- Подвижные блоки имеют оси смонтированы на подвижных блоков.

- Составные шкивы представляют собой смесь двух вышеперечисленных. Прекрасный пример - система блокировочных шкивов.

Шкив был определен великим Героном Александрийским как одна из шести основных простых машин. Сегодня шкивы являются неотъемлемой частью многих механических систем, включая ремни вентилятора, флагштоки и колодцы.

5. Одержимость человечества полетами уменьшила мир

Источник: Дэвид Чедвик / Twitter

Задолго до того, как родились братья Райт, люди пытались подняться в воздух.Одним из таких малоизвестных пионеров полетов был брат Эйлмер. Эйлмер был монахом из аббатства Малмсбери, Англия, который сделал раннюю попытку полета в 1010 году нашей эры году.

Отчет об этом событии можно найти в книге Уильяма Малмсбери XII века « Gesta Regum Anglorum ».

Говорят, что брат Эйлмер был вдохновлен легендой об Икаре, чтобы построить простой планер и попытаться летать. Его планер был построен из деревянного каркаса и полотна или пергамента.

Ему удалось взлететь с высоты около 18 метров над землей и пролететь около 200 метров, , прежде чем впоследствии запаниковать и разбиться, сломав обе ноги.

Эйлмер вернулся к чертежной доске и планировал следующий полет, но был остановлен приказом своего настоятеля во избежание дальнейших попыток.

Желание брата Эйлмера летать, как и других, последовавших за ним, от османского Хезарфена Ахмеда Челеби семнадцатого века до великого Леонардо да Винчи, способствовало нашему пониманию полета и аэродинамики.

6. Сталь была предшественником многих более поздних чудес машиностроения.

Висячий мост Клифтон, Бристоль, Великобритания, Источник: Мэттбак / Wikimedia Commons

Сталь, сплав железа и углерода, известна со времен железа Возраст.Но большую часть этого времени качество производимой стали сильно варьировалось.

Первые доменные печи, способные производить полезную сталь, начали появляться в Китае примерно в 6 веке до нашей эры год до нашей эры и распространились в Европе в средние века. К 17 веку производство стали было более или менее хорошо изучено, а к 19 веку методы производства и качество были значительно улучшены с развитием процесса Бессемера.

Первые металлурги поняли, что когда железо сильно нагревается, оно начинает поглощать углерод.Это, в свою очередь, снижает температуру плавления железа в целом и делает конечный продукт хрупким.

Вскоре они поняли, что им необходимо найти способ предотвратить высокое содержание углерода, чтобы изделия из железа были менее хрупкими.

Примерно 1050 год нашей эры был разработан предшественник современного Бессемеровского процесса. Этот процесс обезуглероживает металл за счет многократной ковки под струей холодного воздуха.

Хотя этот процесс был гораздо менее эффективен, чем более поздняя разработка Бессемера, он стал решающим шагом в развитии металлургии чугуна и стали.

Самая важная разработка была сделана самим Генри Бессемером в 1856 году. Он разработал способ продувки кислородом через расплавленный чугун для относительно дешевого и масштабного снижения содержания углерода, тем самым создав современную сталелитейную промышленность.

7. Парусные корабли открывают океаны

Источник: Порт Сан-Диего / Flickr

Самое первое изображение парусного корабля датируется примерно 3300 г. до н.э. г. и встречается на египетской живописи.Эти ранние лодки имели квадратный парус и ряд весел.

Поскольку они были ограничены рекой Нил и зависели от ветра в узком канале, было жизненно важно сохранить весла для использования в периоды недостаточной скорости ветра.

Эта комбинация паруса и весла доминировала на ранних кораблях на протяжении веков, достигая высот технических достижений с триерой классического периода.

Первые паруса, вероятно, были сделаны из шкур животных, но в додинастическом Египте они были заменены плетеными циновками из тростника и, в конечном итоге, тканью.

Позднее паруса, использовавшиеся в Европе, были сделаны из тканого льняного волокна, которое используется до сих пор, хотя в значительной степени оно было заменено хлопком.

Парусные корабли позволят исследовать моря на большие расстояния и откроют новые торговые пути. По сути, они сократят мир и позволят ранее отключенным странам обмениваться товарами и знаниями.

Они также позволили бы некоторым странам расширить свое влияние по всему миру и, в некоторых случаях, помочь в создании империи.

Торговля и империя дадут стимулы для дальнейшего продвижения корабельных технологий и машиностроения до наших дней.

8. Печатный станок промышленное букмекерство

Источник: Patrice_Audet / Pixabay

Печатный станок был одним из важнейших изобретений в машиностроении и в истории человечества. Адаптация печатного станка Иоганном Гутенбергом была новаторской для своего времени и подготовила почву для огромных достижений в печати, достигнутых в эпоху Возрождения и промышленной революции.

Печать с подвижным шрифтом появилась за некоторое время до Гутенберга, особенно в Китае, но его устройство было первым, кто механизировал процесс массового нанесения текста и изображений на бумагу.

Пресс Гутенберга был создан по образцу древних винных прессов Средиземноморья и фактически был изготовлен из модифицированного винного пресса. Он также был разработан на существующих прессах средневекового периода.

Его печатная машина работала, катая чернила по заранее подготовленной рельефной поверхности подвижного текста, заключенного в деревянную рамку.Затем его прижали к листу бумаги, чтобы создать копию.

Этот процесс был намного более эффективным, чем другие печатные машины того времени, не говоря уже о предыдущем процессе ручного копирования книг.

Печатная машина позволит производить книги быстрее и, что наиболее важно, дешевле, позволяя все большему количеству людей покупать их. Это станет переломным моментом в истории человечества и инженерии.

9. Поршень - жизненно важный компонент поршневых двигателей

Поршни в демонстрационном двигателе, Источник: 160SX / Wikimedia Commons

Изобретение поршня широко приписывают французскому физику Дени Папену в 1690 году нашей эры. .Его дизайн парового поршневого двигателя был разработан более поздними изобретателями, такими как Томас Ньюкомен и Джеймс Ватт, в 18 веке .

Его изобретение, наряду с другими достижениями в технологии паровых двигателей, ознаменует «истинное» начало промышленной революции.

Поршни обычно находятся внутри цилиндра, который герметичен за счет использования поршневых колец. В современных двигателях поршень служит для передачи усилия от расширяющегося газа в цилиндре возвратно-поступательному движению на коленчатом валу.

Применительно к насосам этот процесс фактически обращен вспять.

Сегодня поршни являются важными компонентами многих поршневых двигателей, насосов, компрессоров и других подобных устройств.

10. Рычаги дают вам механическое преимущество

Типы рычага, Источник: Rei-artur / Wikimedia Commons

«Дайте мне место, чтобы встать, и я сдвину Землю вместе с ним», - замечание Архимеда , который формально сформулировал правильный математический принцип рычагов »- Папп Александрийский.

Рычаг, еще один простой двигатель, состоит из балки (или жесткого стержня), которая поворачивается на неподвижном шарнире или опоре. Рычаги - невероятно полезные устройства, которые могут обеспечить механическое преимущество при перемещении очень тяжелых объектов с относительно небольшим усилием, также известным как рычаг.

В зависимости от того, где расположена точка опоры по отношению к нагрузке и усилию, рычаги можно разделить на три типа:

  • Рычаги класса 1 - это рычаги, в которых точка опоры находится в центре балки.Примеры включают качели и лом.
  • Рычаги класса 2 - это рычаги, в которых нагрузка (сопротивление) расположена посередине. Примеры включают тачку и педаль тормоза.
  • Рычаги класса 3 - это рычаги, в которых усилие расположено посередине. Примеры включают пинцет и челюсть.

Рычаги впервые упоминаются в работах Архимеда в году до нашей эры.

11. Локомотив навсегда произвел революцию в транспорте

Локомотив Коулбрукдейла Тревитика, Источник: Музей науки / Wikimedia Commons

Ричард Тревитик, в 1801–1804 , построил первый паровоз и экспериментальный паровоз в Пен- и-Даррен, Уэльс, Великобритания.Позже он продал патент, и в 1804 пересмотрел свою первоначальную версию, чтобы успешно перевозить 10 тонн железа, 5 вагонов, 70 человек на расстояние около 10 миль . Эта поездка заняла чуть более 4 часов , что означает, что этот ранний локомотив разогнался до 2,4 мили в час . Несмотря на это, это был один из первых паровозов, производивших настоящую практическую работу.

Скорость локомотива будет увеличиваться, что изменит облик промышленности и транспорта во всем мире.

12. Наклонные плоскости или пандусы облегчают подъем

Источник: Coyau / Wikimedia Commons

Скромный, но чрезвычайно важный пандус или наклонная плоскость - еще одна из шести основных простых машин, позволяющая перемещать тяжелые грузы вертикально с помощью относительно небольшое усилие. Пандусы широко используются во многих областях, от погрузки товаров в грузовики до пандусов для инвалидов.

Для перемещения объекта вверх по наклонной плоскости требуется меньше усилий, чем для его подъема прямо вверх, но за счет увеличения перемещаемого расстояния.Механическое преимущество пандусов равно отношению длины наклонной поверхности к высоте ее подъема.

Винт и клин - это другие простые станки, которые можно рассматривать как вариации в наклонной плоскости, а не как отдельные формы.

13. Шестерни и зубчатые колеса легко передают крутящий момент

Источник: Тим Грин / Flickr

Зубчатые колеса или зубчатые колеса являются неотъемлемыми компонентами любой вращающейся машины. Они позволяют изменять скорость, крутящий момент или направление мощности.Это одни из самых фундаментальных инноваций в машиностроении в истории.

Любое изменение крутящего момента, произведенное с использованием шестерен и зубчатых колес, обязательно дает механическое преимущество благодаря явлению передаточного числа.

Зубчатая передача также может зацепляться с линейной зубчатой ​​частью, называемой рейкой, производя поступательное движение вместо вращения.

Неясно, когда именно были изобретены шестерни и зубчатые колеса, но некоторые считают, что Архимед. Сегодня шестерни присутствуют во многих движущихся системах и машинах, от велосипедов до судовых двигателей.

14. Подшипник помогает снизить трение.

Источник: Solaris2006 / Wikimedia Commons

Подшипник - еще один фундаментальный элемент машины, который стал определять машиностроение. Эти устройства позволяют ограничить относительное движение в одном направлении или в одной плоскости, одновременно уменьшая трение между движущимися частями.

Подшипники бывают разных форм и размеров, от компонентов, удерживающих валы или оси на месте (подшипник скольжения), до более сложных систем, таких как шариковые подшипники.

Сложные современные подшипники часто требуют высочайшего уровня точности и качества при производстве.

15. Клин отлично подходит для ломки вещей.

Источник: Анна Фродезиак / Wikimedia Commons

Клин - еще одна простая машина и фундаментальная инновация в машиностроении. Они использовались с доисторических времен для таких действий, как колка бревен (топоров) или камней (долота).

Клинья - это подвижные наклонные плоскости, которые можно использовать для разделения двух объектов (или их частей), подъема объектов или удержания объектов на месте посредством приложения силы к широкому концу.Таким образом, форма клина преобразует входящую силу в перпендикулярные силы, 90 градусов к наклонным поверхностям.

Механическое преимущество любого клина зависит от отношения его длины к толщине. Другими словами, широкие короткие клинья требуют большего усилия, но дают более быстрый результат, чем длинные клинья с низким углом.

16. Электродвигатели преобразуют электричество в движение

В разрезе современный асинхронный двигатель, Источник: S.J. de Waard / Wikimedia Commons

Двигатели - это электронные машины, преобразующие электрический ток во вращательное движение.Наиболее распространенные электродвигатели работают за счет взаимодействия магнитного поля и тока для создания силы.

Основной принцип электродвигателей, Закон силы Ампера, был впервые описан Ампера в 1820 и впервые продемонстрирован Майклом Фарадеем в 1821 . Один из первых практических двигателей был создан венгерским физиком Аньосом Едликом в 1828 .

Двигатели используются во многих областях, от промышленных вентиляторов до электроинструментов и компьютерных дисководов.

17. Пружины отлично подходят для хранения энергии

Источник: Qz10 / Wikimedia Commons

Пружина - это просто упругий объект, который может накапливать механическую энергию. Они, как правило, изготавливаются из стали и бывают разных конструкций, но чаще всего в форме спиралей.

Всякий раз, когда пружина растягивается или сжимается, она стремится создать противодействующую силу, приблизительно пропорциональную ее изменению в длине.

Маленькие пружины могут быть изготовлены из предварительно закаленного материала намотки, тогда как большие пружины обычно изготавливаются из отожженной стали, которая после изготовления закаляется.

В ранней истории механики не витые пружины, как дуга, были обычным явлением, но витые пружины начали появляться примерно в 15 веке. Сегодня они имеют множество применений, от подвески автомобиля до обтягивающих игрушек.

18. Параллельное движение было впервые изобретено в 1784 году.

Параллельное движение - это форма механической связи, которая была впервые изобретена Джеймсом Ваттом в 1784 году. Она была разработана для использования в его паровой машине двойного действия Ватта. и заменил предыдущую балку и цепь Ньюкомена.

Его новая конструкция двигателя позволила использовать мощность как при движении поршня вверх, так и при движении вниз, эффективно удваивая эффективность. Ватт назвал это «параллельным движением», потому что поршень и шток насоса должны были двигаться вертикально, параллельно друг другу.

Он оказался чрезвычайно успешным и стал важным нововведением, которое помогло определить механику сегодня.

19. Винты преобразуют крутящий момент в линейную силу

Источник: Hautala / Wikimedia Commons

Винты - еще одна простая машина, которая использовалась с древних времен.Как правило, они состоят из цилиндрического стержня с одной или несколькими спиральными витками резьбы или выступами на внешней стороне.

Эти гениальные инновации в машиностроении преобразуют вращательное движение в линейную силу. Винты также можно рассматривать как узкую наклонную плоскость или пандус, обернутый вокруг цилиндра.

Известные ранние примеры включают винт Архимеда, который использовался как ранняя форма водяного насоса.

Винты, такие как пандусы, рычаги и шкивы, позволяют увеличить усилие.В случае винта он обеспечивает механическое преимущество, заключающееся в преобразовании небольшого крутящего момента (силы вращения) в большую осевую силу нагрузки.

Его механическое преимущество изменяется в зависимости от расстояния между резьбой винта, также называемого шагом. Сегодня они широко используются в качестве крепежа или в качестве основных насосов, прессов и прецизионных устройств.

20. Воздушный насос также помог определить современную механику.

Источник : Британская энциклопедия

Воздушный насос, как следует из названия, представляет собой устройство для нагнетания воздуха.Современные примеры включают велосипедный насос, газовые компрессоры, воздушные рожки и трубные органы, и это лишь некоторые из них.

Первое зарегистрированное изобретение этого устройства было в 1649 году, когда Отто фон Герике изобрел золотниковый вакуумный воздушный насос. Сегодня это устройство, признанное разновидностью воздушного насоса, уменьшило любые потенциальные утечки между поршнями и соответствующими цилиндрами с помощью кожаных шайб.

Роберт Гук сделал первый практический научный образец в середине 1600-х годов, а Фрэнсис Хоксби разработал его двуствольную версию в начале 1700-х годов.

Воздушный насос оказался революционным, поскольку предоставил средства для более позднего развития вакуумной лампы, что, в свою очередь, привело к разработке таких продуктов, как электрические лампочки. Это также помогло в разработке пневматики и поршневых насосов.

21. Газовый двигатель был революционным

Изобретение газового двигателя стало еще одним нововведением, которое помогло определить современную механику. Являясь разновидностью двигателя внутреннего сгорания, газовые двигатели могут работать на различных видах топлива, таких как угольный газ, биогаз, свалочный газ или природный газ, и это лишь некоторые из них.

Сегодня бензиновые двигатели могут проследить свое происхождение от этой невероятно важной инновации.

Первые разработки технологии начались в 19 веке, но первый настоящий двигатель на практике был разработан бельгийским инженером Этьеном Ленуаром в 1860-х годах. Революционный двигатель Ленуара страдал низкой выходной мощностью и высоким расходом топлива.

Новаторская работа Ленуара была продолжена немецким инженером Николаусом Августом Отто, который позже разработал первый четырехтактный двигатель для эффективного сжигания топлива непосредственно в поршневой камере.

Без развития бензинового двигателя современный мир действительно выглядел бы совсем иначе.

22. Маятник был еще одним ранним достижением в механике.

Источник: Элизабет Уильямс / Twitter

Маятник, который фактически состоит из груза, подвешенного на какой-либо оси, является еще одним важным нововведением в машиностроении. Считается, что первые образцы были впервые разработаны где-то в I веке, но самые ранние образцы использовались в качестве базовых сейсмометров во времена династии Хань в Китае.

Одно из первых зарегистрированных случаев использования маятника для хронометража, как говорят, было в Египте 10-го века астрономом Ибн Юнусом, хотя это оспаривается. Именно в эпоху Возрождения маятники начали использоваться в качестве источника энергии в ручных поршневых машинах, таких как пилы, сильфоны и насосы.

Но для дальнейшей разработки маятника для использования в часах понадобился великий Галилео Галилей. Он разработал одни из первых маятниковых часов.

23.Дизельный двигатель также оказался революционным.

Источник: webandi / needpix

И, наконец, изобретение дизельного двигателя стало еще одним важным достижением в машиностроении. Иногда также называемые двигателем с воспламенением от сжатия или двигателем CI, дизельные двигатели названы в честь своего прародителя, Рудольфа Дизеля.

Являясь разновидностью двигателя внутреннего сгорания, дизельные двигатели работают за счет воспламенения топлива путем механического сжатия (адиабатическое сжатие). В этом отличие от бензиновых двигателей, в которых для воспламенения топливовоздушной смеси используется свеча зажигания.

По этой причине дизельные двигатели обладают самым высоким тепловым КПД среди существующих двигателей внутреннего сгорания. Рудольф Дизель впервые задумал эту идею в конце 1870-х годов после посещения лекции Карла фон Линде о цикле Карно.

Позже он запатентовал свою идею в 1893 году, а остальное, как говорится, уже история. Сегодня дизельные двигатели получают много плохой прессы из-за высокого уровня выбросов углерода, и многие власти находятся в процессе их полного запрета.

.

Смотрите также