8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Непосредственный впрыск топлива


Непосредственный впрыск топлива бензиновых ДВС. — DRIVE2

Система непосредственного впрыска топлива является самой современной и совершенной, с точки зрения экономия топлива и экологии, системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей.

Toyota — D4
Mercedes-benz — CGI
Mitsubishi — GDI
Nissan — NEO DI
Renault — IDE
Alfa Romeo — JTS
PSA Peugeot Citroën — HPi
Mazda — DISI; SkyActive
General Motors — Ecotec
Ford — TwinForce, SCTi, EcoBoost
Volkswagen, Audi, Skoda — FSI, TSI, TFSI
Opel — SIDI (Spark Ignition Direct Injection)

Применение системы непосредственного впрыска позволяет достичь до 5-15% экономии топлива в режиме холостого хода и частичных нагрузок, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива.

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI Fuel Stratified Injection – послойный впрыск топлива. Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

1. топливный бак
2. топливный насос
3. топливный фильтр
4. перепускной клапан
5. регулятор давления топлива
6. топливный насос высокого давления
7. трубопровод высокого давления
8. распределительный трубопровод
9. датчик высокого давления
10. предохранительный клапан
11. форсунки впрыска
12. адсорбер
13. электромагнитный запорный клапан продувки адсорбера

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПа) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

Послойное
Стехиометрическое гомогенное
Гомогенное

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, мгновенный отклик на педаль акселератора) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя — режим макисмальной мощности или больших нагрузках — режим максимального момента. На бедной гомогенной смеси двигатель работает в промежуточных режимах и на холостом ходу, когда нужно обеспичить максимальную экономию топлива. При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия, для этого поршень имеет специальную форму днища. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%, что снижает количество кислорода в камере сгорания.

На практике непосредственный впрыск приносит много головной боли своим владельцам, вся экономия топлива рассыпается в труху о стоимость ремонта и обслуживания.

1. Необходимо следить за чистотой бензина от механических примесей. Что попало (самый дешевый) в эти двигатели не пойдет. Только самый дорогой из доступных, причем АИ-98-100.

Полный размер

2. Приходится часто менять топливные фильтры (обычно 30-60т.км.), причем только оригинальные. Использование неоригингальных топливных фильтров чревато быстрым износом ТНВД и забитыми форсунками, со всеми прелестями их замены или ремонта. Можно конечно рисковать, но в случае чего — выйдет раком очень дорого.

3. При температурах ниже -25-30С ТНВД из-за ухода тепловых зазоров не может развить номинальное давление, с прогревом он конечно довольно быстро приходит в норму. Но с увеличением пробега все становится хуже. Двигатель трясется, пытается — и не заводится нормально. Кроме того, запуск при таких температурах быстро изнашивает ТНВД и форсунки.

4. Каждые 30-60т.км. необходимо обслуживать всю топливную систему — промывать форсунки, менять уплотнительные колечки, проверять все насосы и при необходимости менять (насос низкого давления) либо ремонтировать (насос высокого давления). Иначе можно "встать" колом.

Полный размер

5. Нужно подбирать масло так, чтобы оно не сильно загаживало камеру сгорания и впускные клапана (а значит зола не больше 1,15%, а в некоторых случаях и все 0,8-1% что явно не способствует стойкости масла и сроку жизни ДВС до износа), но так чтобы предотвратить износ распредвалов, цепей, шестерен и прочего. Подобрать такое масло — не так то просто, даже сами автопроизводители в своих допусках уже запутались…и даже придумали новую страшилку — проблема LSPI. Несите ваши денежки за новые масла…только это вам не поможет. Выбирайте — повышенный износ всего двигателя, но чистые от нагара клапана и каналы, либо — низкий износ и все заросшее нагаром, с опасностью клина. Хороший выбор, не правда ли? Что в лоб, что по лбу…особенно печально в свете того, что многие двигатели с непосредственным впрыском имеют пластинчатую цепь Морзе, либо кулачки распредвалов непосредственно скользят по толкателям клапанов без роликовых механизмов, имеющую крайне высокие требования к противозадирным и противоизносным компонентам ZDDP и ZP, содержание которых приходится постоянно снижать, с все ужест

Система непосредственного впрыска топлива в бензиновых двигателях — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 5 правок.

Система непосредственного впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.

Такие двигатели более экономичны (до 20 % экономии[1]), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива.

Аббревиатура GDI подразумевает систему непосредственного впрыска на двигателях Mitsubishi. Это произошло потому, что впервые система непосредственного впрыска была применена на двигателе GDI, устанавливаемом на автомобили компании Mitsubishi.[1] Mitsubishi первыми применила электронно-управляемый непосредственный впрыск что позволило применить на некоторых режимах суперобедненную смесь.

Согласно SAE J1930, система непосредственного впрыска имеет наименование DFI, direct fuel injection (рус. «непосредственный впрыск топлива»). В то же время, производители двигателей часто дают системам непосредственного впрыска собственные торговые наименования, например:

GDI состоит из следующих составляющих:

Непосредственный впрыск. — DRIVE2

Любой работник автосалона с гордостью заявит вам, что двигатель предлагаемого вам автомобиля "оборудован новейшим непосредственным впрыском". Чаще всего, при этом, смысл и принцип работы нововведения объяснить затруднится, но зато посулит немыслимую экономию ("до 30%") и "увеличение мощности".

Между тем, "новейший" непосредственный впрыск, это технология разработанная еще в середине 30-х и серийно применявшаяся в годы Второй мировой, например, на истребителях "Мессершмитт 109".

Вскоре после войны немецкая инженерия несколько раз пыталась применить этот принцип на мелкосерийных автомобилях, в числе которых был и культовый Mercedes 300SL c механическим непосредственным впрыском — по сути, настоящий "бензиновый дизель".

Количество поломок систем первого поколения оказалось решающим — про принцип в промышленном масштабе забыли на пяток десятилетий, несмотря на заметную экономию на фоне примитивного карбюраторного смесеобразования.

Идея распылять топливо непосредственно в цилиндр стала практически полезной только в начале 90-х. Причина проста — экология и ее нормативы. Значительное количество времени при городском режиме движения автомобиль работает в режиме малых и частичных нагрузок, иногда топливо тратится практически "в пустую" — фактически только на поддержание холостых оборотов.

Хорошо было бы, подумали инженеры, для режимов малых нагрузок наполнять цилиндры бедной смесью, сильно отступив от пропорций стехиометрии. И если для полноценного горения за идеал принято соотношение 14.7 кг воздуха на 1 кг бензина плюс-минус 10%, то выгодным, с точки зрения экологии, было бы найти возможность поджигать смесь в несколько раз более бедную, экономя бензин. Раза так в 2-3 более бедную, иначе заметного результата не будет. Из практики однако известно, что уже соотношение более 15,7 вызывает проблемы с горением. При соотношениях более 22:1 эффективного воспламенения уже не происходит, что грозило затее провалом.

Вот тут-то про непосредственный впрыск и вспомнили. В отличие от обычного распределенного впрыска, где форсунка льет прямо во впускной канал, поместив форсунку прямо в цилиндр, мы получаем возможность управлять фазой и длительностью впрыска — впускной клапан уже не мешает. Это как видео против киноаппарата с обтюратором — когда источник топлива уже в цилиндре, управляй им как хочешь — ничто не мельтешит перед форсункой и не отвлекает от процесса. :)

Для режима частичных нагрузок впрыскивание организовали в момент начала такта сжатия. Топливо долетает до днища поршня специальной формы, попутно забирая часть тепла в цилиндре и препятствуя тем самым детонации, хорошо перемешивается с воздухом и вспыхивает к моменту конца сжатия совместно с дополнительно поданной порцией в итоговом соотношении всего около 40:1(!). В обычном же режиме, двигатель работает на уже привычном соотношении воздуха и бензина, близком к стехиометрии. Вот вам и зримая экономия.

Это как бы осязаемые плюсы. А теперь сюрприз, поговорим о недостатках.

Система питания обычного двигателя работает при давлении около 3,5 атм. Для этого нам требуется электронасос, не шибко отличающийся по конструкции, надежности и цене от насоса "Малыш" у вас на даче. Также потребуется несколько форсунок, по числу цилиндров — а это тоже не ахти какие большие затраты как при производстве так и при последующей возможной замене. Добавляем сюда только обычные шланги и фильтр. Неисправный насос сразу даст о себе знать и может быть довольно просто продиагностирован и заменен на аналогичный. С форсунками возни и проблем еще меньше — живут десятками лет.

А теперь вот вам, форсунка непосредственного впрыска, по сравнению с распределенным впрыском, это недешевые, сложные в производстве и довольно капризные форсунки с давлением от 50 до 200 атм. Сравните с 3,5 атм. Да, это не дизель с 1800-2500 атм, но уже совсем точно не "обычный" распределенный впрыск.

Систему дополнительно усложняет наличие ТНВД — самого насоса, который обеспечивает столь высокое давление. В принципе, любой насос — штука механическая. А если давления высокие, то потенциально проблемная.

Идем далее: осмоление и закоксовка рабочей части форсунки нарушают точность ее работы — чувствительность к качеству топлива заметно повышается. Надежность — нет.

Требования экологии подразумевают рециркуляцию картерных газов — избытка давления в масляной системе. Это минимум. А иногда еще и части выхлопных газов… То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, "на переработку". Экология…

Вспоминаем теперь, что форсунка во впускные каналы уже не прыскает — грязь и отложения не смывает. А вентиляция именно через них и организована, что в итоге?! А вот что:

Закоксовывание приводит к затруднению закрытия клапана, что в скором времени гарантирует снижение компрессии в цилиндрах. Мотор начинает ощутимо потряхивать, а после цилиндры и вовсе отключаются. Применение масел обычного качества, что норма для всех производителей (LowSAPS, с низкой щелочностью и высоким NOACK индексом)
отпускает мотору пару-тройку лет сравнительно беспроблемного существования.

Теперь поговорим про прирост мощности и экономичности. Как современный (года так с 1990) автомобиль с условным 3-х литровым двигателем ел по городу 15-16 литров, так и ест. Без улучшений. Что с непосредственным впрыском, что с распределенным. Какие тесты журналисты не проводят — там везде примерно одни и те же цифры фактического расхода.

Мощность, точнее — момент? Для примера рассмотрим в сравнении два практически идентичных мотора — BMW N52 и BMW N53. Ну едва ли этот эксцесс в 20 Н/м можно назвать достижением, чиптюнингом можно достичь сравнимых результатов.

Что в итоге?

Непосредственный впрыск для реальных условий эксплуатации это:

1.Использование конструктивно сложных и потенциально ненадежных узлов и агрегатов.
2.Исключительно высокие требования к качеству топлива, а особенно — масла.
3.Снижение потребления топлива и увеличение мощности на практике малозначительны, или вообще отсутствуют.
4.Диагностирование неисправностей и ремонт значительно усложнены.

Покупая автомобили BMW, Audi, Mercedes и прочих марок с непосредственным впрыском топлива, найдите время разобраться с особенностями эксплуатации этих двигателей на основе практического опыта владельцев, а не рекомендаций производителя.

Непосредственный впрыск — Энциклопедия журнала "За рулем"

Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI

Система питания с распределенным впрыском имеет следующие составные части:
— система подачи и очистки топлива;
— система подачи и очистки воздуха;
— система улавливания и сжигания паров бензина;
— электронная часть с набором датчиков;
— система выпуска и дожигания отработавших газов.

Система непосредственного впрыска — DRIVE2

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

• послойное ;
• стехиометрическое гомогенное ;
• гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Непосредственный впрыск топлива FSI или как предотвратить "смерть двигателя" — DRIVE2

Система впрыскивания топлива бензинового двигателя FSI

Доброго времени суток, уважаемые любители автомобильной техники. Решил в очередной раз обратить Ваше внимание на "пагубное влияние" отечественного бензинового топлива для сердца автомобиля, т.е. его двигателя. Уверен на 100%, что найдутся, как сторонники моей позиции, так и ее противники. Вероятней всего, к единомышленникам присоединятся те, кто уже прошел этот "горький и финансово затратный опыт". А к противникам — те, кому необходимо зарабатывать на всеобщем горе.
Можно долго искать "кто виноват и что делать", каждый решит сам для себя, просто предлагаю рассмотреть реальный случай из повседневной "рутинной жизни". Возможно, мой опыт кому то поможет преждевременно предотвратить большие проблемы и своевременно определить причину возникновения неисправности.

Как и предписано здравым умом и смыслом, а также по совету производителя, при возникновении проблем с автомобилем (неустойчивая работа, недостаточная мощность двигателя, рывки при ускорении автомобиля, и т.д.), мы начинаем проверку посредством диагностического оборудования. Лучше не затягивать с посещением сервисного предприятия и обратиться к специалистам сразу же, даже при кратковременном возникновении рекламации. Если пустить на "самотек", то скорей всего прийдется готовить "денюжку на новый двигатель".

Прогоревший порень

Нагар на клапанах

Полный размер

Неисправности в накопителе данных

К сожалению, ни один из доступных на данный момент диагностических приборов не определит точно, где "зарыта собака" — на самом деле причин может быть очень много. В нашем случае, для определения (возникновение пропусков зажигания) точного виновника, действуем по "заведомо накатанной схеме"

Полный размер

причинами пропусков зажигания может быть следующее

Если с проверкой узлов системы зажигания (катушки, свечи) все легко и понятно (перестановка местами позволит определить, то ли свеча, то ли катушка), то как проверить топливные форсунки высокого давления. Рабочий диапазон 50-150 бар.

После остановки двигателя необходимо проверить давление топлива в топливной рампе.

Полный размер

После остановки двигателя давление в рампе снижается

Если давление в рампе снижается, то это говорит о том, что форсунка негерметична и топливо просачивается в цилиндр.

При нормальном состоянии давление в рампе после остановки двигателя всегда увеличивается.

Полный размер

Давление в рампе увеличивается

Как быть, чтобы продлить жизнь и работоспособность форсунок — профилактическая чистка форсунок: либо посредством специальной присадки в бак…

оригинальная присадка

которую производитель специально для стран с плохим качеством топлива

…либо посредством ультразвуковой очистки форсунок при помощи VAS 6418

стенд для ультразвуковой очистки форсунок

более эффективная чистка

Ультразвуковая очистка — более трудоемкий и финансово затратный метод, так как для очистки необходим демонтаж форсунок с дальнейшей заменой всех уплотнительных деталей, а это… уже совсем другая история:)))

Система непосредственного впрыска топлива GDI: принцип работы

Система непосредственного впрыска топлива применяется на бензиновых двигателях последних поколений с целью повышения их экономичности и увеличения мощности. Она предполагает впрыск бензина напрямую в камеры сгорания цилиндров, где и происходит его смешение с воздухом и образование топливовоздушной смеси. Первыми двигателями, которые были оснащены такой системой впрыска, стали моторы GDI (Mitsubishi). Аббревиатура GDI — расшифровывается как «Gasoline Direct Injection», что дословно переводится как «непосредственный впрыск бензина».

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi),  FSI или TSI (Volkswagen), JIS (Toyota), CGI  (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Конструктивные особенности двигателей GDI

Система питания воздухом двигателя GDI

Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:

  • Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
  • Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
  • Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
  • Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
  • Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
  • Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
  • Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Режимы работы системы прямого впрыска

Схема работы непосредственного впрыска топлива

Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:

  • Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
  • Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
  • Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Особенности эксплуатации системы

Поршень двигателя GDI

Главным требованием для корректной работы двигателя с прямым впрыском топлива является использование качественного бензина. Оптимальная марка топлива, как правило, указывается в инструкции к автомобилю.

Обычно рекомендуется заливать бензин с октановым числом не менее 95. Однако важно учитывать, что этот уровень не должен быть обеспечен за счет различных присадок. Исключение составляют присадки, рекомендованные производителем двигателя и автомобиля.

Низкое качество топлива, особенно при высоком проценте содержания серы, бензола и углеводородов в отечественном бензине способствует преждевременному износу форсунок, что может вывести двигатель GDI из строя.

Не менее требователен бензиновый мотор с непосредственным впрыском к тому, какое масло применяется в системе. Здесь лучше всего следовать инструкциям производителя.

Плюсы и минусы использования

Главной особенностью двигателя gdi является подача топлива напрямую в цилиндр, что сокращает время цикла и существенно повышает мощность автомобиля (до 15%). Помимо этого уменьшается расход топлива (до 25%) и повышается экологичность выхлопа. Это обеспечивает более эффективную эксплуатацию автомобиля в городских условиях.

Для автомобилей, на которых установлен GDI двигатель, проблемы эксплуатации связаны прежде всего со следующим перечнем недостатков:

  • Необходимость нейтрализации отработавших газов при работе мотора на малых оборотах. При образовании обедненной топливно-воздушной смеси в выхлопных газах образуется много вредных компонентов, для устранения которых требуется установка системы рециркуляции отработавших газов.
  • Повышенные требования к топливу и маслу. Наилучшим бензином для GDI считается топливо с октановым числом 101, который практически недоступен на отечественном рынке.
  • Высокая стоимость производства двигателей и ремонта. Весомую долю проблем доставляют форсунки, подающие бензин в цилиндры. Они должны выдерживать высокое давление. Если они забиваются по причине некачественного топлива, их невозможно разобрать и почистить — форсунки подлежат только замене. Их стоимость в несколько раз выше, чем у обычных.
  • Повышенное внимание к системе фильтрации. Чистка и замена воздушного фильтра в такой системе должна производиться чаще, поскольку качество поступающего воздуха напрямую связано с состоянием форсунок.

Отечественные автомобилисты весьма скептически относятся к системе непосредственного впрыска, что обусловлено высокой стоимостью обслуживания автомобиля. С другой стороны, такие двигатели считаются передовой технологией, которая развивается и активно внедряется в автомобилестроение по всему миру.

Технология непосредственного впрыска FSI — DRIVE2

Сегодня я хотел бы поговорить о технологии впрыска FSI, что же это такое и с чем его едят? Аббревиатура FSI дословно расшифровывается как — Fuel Stratified Injection, что на наш лад будет звучать как послойный впрыск топлива. Вопреки многим заблуждениям она заключается в том что позволяет работать двигателю на обедненных составах смеси.

Что же это значит?

Стехиометрическим составом смеси двигателя внутреннего сгорания с искровым зажиганием принято считать смесь воздух/топливо 14.7:1. Обедненной смесью считается смесь с избытком воздуха т.е. 14.7:1>

Для чего это нужно?

Имея такую систему впрыска, вы можете приготовить смесь которая будет не однородна во всем объеме цилиндра. Иными словами это дает отличную тягу на малых и средних оборотах, плюс экономит топливо.

Из чего состоит?

Мы имеем впускной коллектор с изменяемой длинной, впрыск топлива прямо в цилиндр, поршень построенный асимметрично для создания завихрений воздуха это и есть основные составляющие впрыска FSI.

Как же происходит послойное образование смеси?

Послойное образование смеси происходит на частичных нагрузках и в низком диапазоне оборотов ( примерно до 3500 об/мин)

На такте впуска заслонка коллектора с изменяемой длиной перекрывает половину впускного канала, что приводит к созданию зоны повышенной турбулентности возле впускного клапана, благодаря чему воздух попадает в цилиндр под завихрением.

На такте сжатия, примерно за 35 градусов до ВМТ (по коленвалу) происходит впрыск топлива. За эти 30 градусов, как раз и происходит послойное смесеобразование и мы получаем в зоне свечи, некий объем с однородной смесью топлива с составом 14.7:1, а вокруг него воздух не участвующий в горении.

Далее с каким то определенным опережением зажигание происходит сгорание горючей смеси. Что мы получаем на выходе:

1. Правильную скорость сгорания на обедненной смеси.

2. Отсутствие перегревов благодаря тому, что бензин в жидком состоянии попадает в камеру сгорания и охлаждает ее.

3. Как следствие высокую детонационную стойкость.

4. Большее давление при сгорании.

В мощностных режимах работы, при высокой нагрузке и оборотах больше 3500 об/мин, двигатель работает в обычном режиме без послойного смесеобразования. Заслонка во впускном коллекторе открывает канал полностью, тем самым убирая высокую турбулентность возле впускного клапана. Помимо этого коллектор получается с изменением длины. Как известно на низких оборотах наполнение цилиндра лучше когда коллектор имеет длинную и узкую форму, а на высоких оборотах, короткую и широкую.

К минусам данной системы можно отнести разве только усложнение конструкции. А именно, добавление еще одного насоса (высокого давления), Коллектор с заслонками и сервоприводом, форсунки спроектированные под высокое давление.

© Quattro Garage

Непосредственный впрыск на примере Mitsubishi GDI — DRIVE2

Бедные, бедные смесители — Как капля русского бензина убивает лошадь японского прогресса

Что делать? С новыми автомобилями все понятно. Если фирма официально решается поставлять новые технологии в Россию (или конкретно в Сибирь), значит, знает, на что идет, и будет отвечать за свое "поведение". А как быть с японским second hand?

Mitsubishi Chariot GDI

Красив умен, но не предсказуем.

"Паровоз ни-ка-кой пылинки не любит: машина, брат, это — барышня… Женщина уже не годится — с лишним отверстием машина не пойдет…" Это фраза из романа Андрея Платонова. Такой самобытной мудростью наставлял старый машинист паровоза своего ученика. То было начало 20 века, когда технический прогресс семимильными шагами шел мимо России. Сейчас начало 21 века, последние паровозы догнивают на запасных путях, а люди ездят на автомобилях, которые посложнее паровоза будут. И вот ведь какая закономерность — чем дальше мы от творения Стефенсона, тем актуальней слова того старого машиниста. Во всяком случае, современные Hightec-автомобили из Японии настолько претенциозны в своем строении, что могут напрочь отказаться ехать буквально из-за одной пылинки в бензине. И в первую очередь это касается автомобилей с двигателями с прямым впрыском, работающими на сверхобедненной смеси. А уж бензин у нас бывает такой, что впору не на автомобилях ездить, а возвращаться к паровой тяге.

Что и говорить, сбываются худшие прогнозы иркутских сервисменов — японские ноу-хау, проникающие в последнее время с дальневосточных рынков праворульного second hand, оказываются в крайне враждебной для себя среде и не способны показывать ту замечательную неприхотливость, за которую мы любим "японцев" уже добрых десять лет. Иногда достаточно одной заправки жидкостью, называемой у нас бензином, а на самом деле представляющую собой какую-нибудь смесь из газового конденсата с добавлением чистого тетраэтилсвинца. И конец всем высоким технологиям. Такие жидкости появляются на рынке, когда случаются перебои с поставками кондиционного бензина, что недавно и наблюдалось в регионе. Вот тут-то и началось. Даже традиционные двигатели с карбюратором или впрыском зачастили в сервисы по причине отказов систем зажигания и впрыска, а уж двигатели с прямым впрыском — GDI у Mitsubishi и D4 у Toyota, так и вовсе начали вставать, даже не успев доехать до сервиса. Им не то что суррогат принимать смертельно, даже нормальный заводской бензин противопоказан. Как уже показала практика.

Впрыснутые

Сейчас нет смысла очень подробно вдаваться в мир теории и всех нюансов моторов GDI (Gasoline Direct Injection — бензиновый прямой впрыск). Он придуман не вчера и не японцами, а в заслугу фирмы Mitsubishi или Toyota можно поставить собственные доработки и внедрение в массовое производство. Чем всегда и отличались японцы. Но то, что прямой впрыск бензина — это не только торчащая непосредственно в цилиндре форсунка, надо представлять очень хорошо. В целом процесс получения и использования энергии выполнен на ином качественном уровне, нежели в обычном двигателе с распределенным впрыском. Конечно, это не ядерный реактор в сравнении с той же паровой машиной, но тем не менее.

Двигатель GDI

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно, более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. Цель одна — добиться большей экономичности при сохранении или даже увеличении мощности, а заодно снизить вредные выбросы. Главная сущность прямого впрыска — работа двигателя в ненагрузочных режимах на сверхобедненной смеси, когда соотношение воздух/бензин может доходить до 40:1. И для этого потребовалось внедрять много решений: вихревую форсунку высокого давления вверху камеры сгорания, сложную форму поршня, особенной формы впускные каналы, повышенную до 12 степень сжатия, разные моменты впрыска бензина, более сложный катализатор — иридиевый и платиновый. Первый нужен для работы в экономичных режимах на сверхобедненной смеси, когда резко возрастает выделение окислов азота, а второй для мощностных режимов, когда двигатель работает на смеси в обычной пропорции. Ведь даже двигатель GDI не способен обеспечить силовые нагрузки на обедненной смеси, хотя и здесь расходует топливо более рационально за счет лучшего распыла и прямого впрыска. Стало быть, и электронное управление впрыском здесь куда более сложное и точное, с кучей датчиков. Например, на экономичных режимах маленькую порцию бензина нужно быстро впрыснуть только в конце такта сжатия, а на силовых (разгон, высокие скорости) в начале и "по полной программе", как в обычных двигателях. А ведь могут дополнительно использоваться и "обычные" причиндалы: турбонаддув, система рециркуляции отработавших газов, система изменения фаз газораспределения и т. д. И все же определяющим "наворотом" двигателя GDI является его топливная система, где рабочее давление в случае Mitsubishi почти в двадцать раз выше, чем давление в обычных двигателях с распределенным впрыском, а в случае Toyota и того больше. Иначе не добиться необходимого распыла и т. д. Как следствие, необходимо использовать мощные форсунки, мощные соленоиды, да и другие детали из-за более жесткого режима работы должны быть крепче и, стало быть, более дорогими. А главное, для достижения таких давлений используются прецизионные топливные насосы по типу дизельных.

И что характерно, требования двигателя GDI к октановому числу как раз обычные. Несмотря на высокую степень сжатия, хорошее охлаждение смеси при непосредственном впрыске предполагает использование бензинов с обычными числами (в пределах 92-95). Но система питания и система нейтрализации отработавших газов крайне требовательны к степени очистки и составу бензина, содержанию грязи, свинца и серы. Последней, в принципе, вообще не должно быть, поскольку от серы сразу же "загнется" иридиевый катализатор, но главное — обилие серы вызовет скорый абразивный и коррозийный износ топливной аппаратуры, а также отказ электроники. В Японии двигатели GDI пошли в серийное производство еще в 1996 году, но там к тому времени бензин уже отвечал должным требованиям. В Европе до сих пор выпускается бензин с содержанием серы в 5 раз выше, чем в японском. И только в 2002 году предполагается начать выпуск чистых от серы бензинов. Чтобы успешно продвигать в Европе свои двигатели GDI, фирма Mitsubishi пошла на ряд ухищрений — адаптировала систему нейтрализации и внесла изменения в алгоритм моментов впрыска, чтобы наиболее полно отвечать особенностям езды в Европе. Ведь европейские противники GDI прямо обвиняли японцев в некорректном навязывании своих технологий. Мысль такая: двигатели GDI хороши только для Японии, которой присущи невысокие скорости движения и постоянные пробки — условия, в которых GDI показывает наилучшие результаты по топливной экономии. А для Европы, с ее протяженными автобанами и высокими скоростями (а следовательно, высокими нагрузками на двигатель) преимущества прямого впрыска уже не столь ощутимы. Вот инженеры из Mitsubishi и "подшаманили" двигатели под более жесткие условия работы. Но это касается только тех моторов, что идут на европейский рынок. Таковы общие и схематичные сведения по двигателям GDI, которые у разных фирм по исполнению и принципам работы, конечно, отличаются. А ведь кроме японцев и ряд европейских фирм уже подготовили свои GDI.

Кто виноват?

А теперь зададимся вопросом, во сколько раз больше серы в нашем бензине? Черт ее знает. Да и всего остального "мусора" не меньше. При этом к нам на рынок second hand поступают Mitsubishi c двигателями GDI с японского рынка, где двигатели не проходили адаптацию даже для Европы и "ждут" чистого, как слеза, бензина. Наплыв таких автомобилей небольшой и начался не так давно, но уже сервисмены отметили ряд характерных проблем, связанных с их эксплуатацией. Как тех, что уже случились, так и тех, которые могут возникнуть впереди.

В первую очередь, надо ясно понимать, что праворульный "японец" даже свежего года уже поездил в Японии и в случае с GDI "съел" определенный ресурс его прецизионной топливной системы. И если даже речь не идет о скорой кончине насоса, то работа электроники из-за плохого бензина начинает давать сбои, и с весьма скоротечными осложнениями.

Обычный двигатель с впрыском топлива

Конкретно по автомобилям Mitsubishi с двигателями GDI уже были и повторялись такие случаи. Машина вдруг начинает глохнуть при добавлении газа, хотя заводится и работает на холостых прекрасно, и даже едет, если нога едва-едва касается педали. Но чуть газанул, и двигатель заглох. В чем дело? А дело как раз в особенностях работы GDI на разных нагрузочных режимах, т. е. в данном случае в особенностях неработы. Как удалось выяснить в ходе "коленочного" обследования и ремонта, дело вот в чем.

Напорная топливная магистраль у Mitsubishi как бы двухступенчатая. Первый насос, что стоит в баке, закачивает бензин и под регулируемым электроникой давлением подает его к основному насосу, который последовательно доводит давление уже до необходимого. Без нагрузки давление маленькое, потому как цилиндры сжигают сверхобедненные смеси и топлива требуется мало. При увеличении давление растет. То есть первый насос работает циклично — "давит" под нагрузкой и "отдыхает" при спокойном режиме. В главном же насосе стоит датчик, который строго следит за давлением. Но к его рабочей части подходит очень узенький каналец, который нетрудно перекрыть бензиновым "мусором". Что и произошло. В таком случае истинное давление в магистрали датчик не "видит". Судя по всему, на легких режимах поступающие от него сигналы не нужны блоку управления, поскольку регулирования впрыска не происходит. Двигатель работает. Но при силовых нагрузках "недостаток" давления становится ложной командой к блокировке впрыска. Двигатель глохнет. Прочисткой забившегося канала, казалось бы, можно решить проблему, но "слепой" датчик успел еще и кончить погружной насос. Судя по всему, он из-за сигналов о ложном топливном голодании перешел на постоянный н

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

На дизельных моторах непосредственный впрыск и ТНВД появился существенно раньше, и ресурс узлов был не таким уж низким. У бензиновых все получилось иначе: насосы оказались весьма недолговечными. Почему? Потому что дизтопливо имеет более высокие смазочные свойства, чем бензин, и без специальных смазывающих присадок ресурс всех узлов трения очень мал.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

Бензиновый двигатель с непосредственным впрыском топлива: устройство и особенности

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное  решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Содержание статьи

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу  и  распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

 Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии.  Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта,  а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность  во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Читайте также


Смотрите также