8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Назначение турбины в дизельном двигателе


Автомобильный турбокомпрессор: принцип работы и назначение

С момента появления двигателя внутреннего сгорания и использования его на автомобильном транспорте, конструкторы бились обеспечением максимально возможно выхода мощности при минимальных переработках силовой установки.

Назначение автомобильного турбокомпрессора

Содержание статьи

Принцип работы турбокомпрессора

На данный момент решением данной проблемы является использование турбокомпрессора, он же турбонаддув, турбонагнетатель. Суть работы данного устройства – обеспечение повышенного давления воздуха, подаваемого в цилиндры силовой установки. Благодаря применению турбокомпрессора конструкторам удалось повысить выходную мощность без надобности в конструктивном изменении двигателя, увеличении объема камер сгорания и оборотов коленчатого вала. При этом потребление топлива у турбированного мотора будет ниже за счет более полного его сгорания в цилиндрах.

Турбокомпрессор на данный момент устанавливается и на бензиновые, и на дизельные моторы. Но при этом установка нагнетателя более эффективна на дизельных установках. Связано это с особенностями работы такого мотора – у дизеля степень сжатия в цилиндрах почти вдвое больше, чем у бензиновых, а скорость вращения коленчатого вала – меньше.

Риск использования нагнетателя на бензиновом моторе связан с возможным образованием детонационного сгорания в цилиндрах из-за резкого возрастания количества оборотов коленчатого вала. При этом в бензиновом моторе наддув работает в более жестких температурных условиях. Температура отработавших газов в бензиновом моторе выше, чем у дизеля, а поскольку наддув использует энергию отработанных газов, то у бензинового агрегата нагнетатель больше разогревается.

Существующие турбонаддувы могут конструктивно отличаться, но все они включают в себя определенные составные части.

Конструкция турбокомпрессора

Принцип работы системы турбонаддува

Турбонаддув включает в свою конструкцию воздухозаборник с воздушным фильтром, дроссельную заслонку, турбокомпрессор, интеркулер (охладитель наддувочного воздуха), впускной коллектор и элементы управления. Все эти элементы связаны между собой патрубками и напорными шлангами.

Основным элементом всей этой системы является турбокомпрессор, поскольку он обеспечивает нагнетание воздуха под давлением в систему. Состоит он из двух колес, посаженных на один ротор. Корпус компрессора состоит из двух камер, в каждую из которых помещено свое колесо.

Автомобильный турбокомпрессор в разрезе

Первое колесо компрессора – турбинное. Оно воспринимает на себя энергию отработавших газов и через ротор передает его на другое колесо. То есть, турбинное колесо является ведущим. Поскольку оно работает с разогретыми газами, то изготавливается это колесо, и также его камера из жаропрочных материалов.

Второе колесо – компрессорное. Оно получает вращение от ведущего колеса и является ведомым. Данное колесо засасывает через воздухозаборник воздух, сжимает его, повышая давление, и перепускает его дальше.

Свободное вращение ротора обеспечивается наличием подшипников скольжения. Данные подшипники – плавающие, то есть между ними, ротором и корпусом обеспечивается зазор. Смазка этих подшипников производится от системы смазки мотора. Чтобы масло не вытекало наружу, и не попадало в воздух или обработанные газы, в конструкции используются уплотнительные кольца.

1 – крыльчатка турбины; 2 – крыльчатка компрессора; 3 – вал; 4 – подшипниковый узел; 5 – штуцер подачи масла; 6 –регулятор. давления наддува.

В большинстве турбонаддувов используется воздушная система охлаждения, но на некоторых бензиновых двигателях встречается и жидкостная система охлаждения компрессора, входящая с состав системы охлаждения двигателя.

Интеркулер включен в систему турбонаддува для обеспечения охлаждения сжатого воздуха. Во время работы турбокомпрессора воздух разогревается, что приводит к снижению его плотности. При охлаждении плотность снова возрастает и повышается давление. Интеркулер представляет собой обычный радиатор. Он может охлаждать воздух как при помощи воздушного, так и жидкостного охлаждения. После интеркулера воздух подается во впускной коллектор, а затем уже – в цилиндры.

В турбонаддув входят элементы управления, которые обеспечивают правильное функционирование. Главным элементом управления является регулятор давления. Данный регулятор представляет собой перепускной клапан. Этот клапан регулирует количество подаваемых отработанных газов на турбинное колесо. Данный клапан работает на основе показаний датчика давления наддува, входящий в систему управления двигателем. Этот клапан обеспечивает подачу только необходимого количества отработанных газов, остальные пуская в обход турбокомпрессора.

Также в систему управления турбонаддува могут входить еще один клапан– предохранительный, который устанавливается за компрессором. Он обеспечивает защиту от возможных скачков давления в системе при резком закрытии дросселя. Этот клапан может либо стравливать избыток давления, либо перегонять лишний воздух на вход в турбокомпрессор.

Принцип работы турбокомпрессора и его недостатки

Видео: Принцип работы турбокомпрессора (турбины)

Принцип работы турбонаддува достаточно прост: выхлопные газы поступают в камеру турбинного колеса и заставляет его вращаться. Вращаясь, он чрез ротор приводит в движение турбокомпрессор. Тот в свою очередь засасывает воздух, сжимает его и подает в интеркулер для охлаждения. После прохождения интеркулера воздух под давлением подается во впускной коллектор. Работа наддува контролируется и регулируется регулятором давления, который дозирует количество отработанных газов, поступающих в камеру турбинного колеса. Благодаря этому осуществляется возможность изменения производительности турбонаддува в зависимости от вращения коленчатого вала.

Но такая конструкция имеет один существенный недостаток – при резком открытии дроссельной заслонки турбонаддув не успевает обеспечить необходимое количество воздуха для подачи в цилиндры. Для этого ему требуется определенное время. Выливается это в образование негативного эффекта, который получил название «турбояма». То есть, водитель резко нажимает на педаль газа, рассчитывая резко ускориться, но из-за нехватки воздуха ускорения сразу не происходит. Автомобиль начнет набирать обороты только после того, как наддув обеспечит необходимое количество воздуха. Вслед за «турбоямой» возникает еще один негативный эффект – «турбоподхват». Происходит он после «турбоямы» и сопровождается увеличенным давлением в турбонаддуве из-за интенсивной работы компрессора.

Для решения проблемы появления существует несколько способов. Первый из них – использование комбинированного наддува (состоящего из механического нагнетателя и турбонагнетателя). На начальном этапе при резком нажатии на педаль газа давление в выпускном коллекторе обеспечивает механический нагнетатель, работа которого не зависит от выхлопных газов, после в работу вступает турбонагнетатель, а механический отключается.

Видео: Устройство и неисправности турбины

Вторым способом преодоления «турбоямы» является использование двойного турбонаддува, так называемого «twin-turbo». Двойной турбонаддув обычно применяется на V-образных двигателях.

И третий способ – использование турбонаддува с изменяемой геометрией. В такой турбине воздушный поток оптимизируется за счет изменения площади канала, по которому подается воздух.

Неисправности и их диагностика

При своей достаточно простой конструкции, у турбокомпрессора может возникнуть большое количество неисправностей. Основными из них являются:

  • Утечка масла через уплотнительные кольца и попадание его в воздух, подаваемый в цилиндры;
  • Утечка воздуха в местах соединения патрубков;
  • Засорение канала отвода масла из компрессора;
  • Засорение подающего масляного канала;
  • Неисправности системы управления;
  • Трещины и деформация корпуса компрессора;
  • Засорение воздушного фильтра;

О многих возникших проблемах с работой турбонаддува могут просигнализировать выхлопные газы. Синий дым из трубы будет указывать на попадание масла в воздух, черный – на утечку воздуха, а белый – на засорение отводного масляного канала.

Также о неисправностях может рассказать сам двигатель и турбонаддув. Потеря динами разгона будет указывать на проблемы с управлением турбиной, свист при работе мотора будет сигнализировать об утечке воздуха между компрессором и двигателем, а деформация корпуса будет сопровождаться скрежетом.

Несмотря на свои недостатки и неисправности все больше автомобилей оснащаются турбокомпрессорами, поскольку данное устройство – действительно полезное.

Как работает турбина, принцип действия турбины — DRIVE2

Термин «турбо» практически у всех на слуху. Свистит турбина, ревёт прямоток. Хоть единожды в жизни любому автолюбителю приходила в голову идея заиметь «турбомонстрика». Любому хочется увеличить поголовье «коняшек» под капотом. Но чаще всего приходится отказываться от мечты по причине мнимой дороговизны и непрактичности. Соответствует ли это реальности? Давайте разберёмся, как работает турбина, принцип действия турбины, обратившись к теории.

Мощность движка напрямую зависит от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Назначение турбины увеличить подачу воздушно-топливной смеси. Мощность мотора повышается пропорционально увеличению количества сжигаемого за единицу времени топлива. Но для горения бензина необходим недюжинный запас воздуха в моторе. То есть, чем больше сжигаем бензина, тем большее количество воздуха нужно, которое необходимо «впихнуть» в мотор (именно, «впихнуть», так как сам мотор не справится с забором такого количества воздуха, и фильтры нулевого сопротивления в этом ему не помощники). Вот тут и выходит на сцену устрашающая маленькая деталь турбина.

У турбины нагнетатель-крыльчатка размещён на едином валу с турбиной-крыльчаткой, встроенной в выпускной коллектор, и приводимой в движение вращения с помощью отработанных газов. Величина частоты вращения часто выше 200 тыс. об/мин.

И здесь проявляется один минус: при резком нажатии газа, надо ждать увеличение оборотов мотора, увеличение давления выхлопных газов, раскрутку турбины, и загонку воздуха. Это явление называется turbo-lag (турбо-яма), и сегодня его умеют укрощать, справляться с данным эффектом. Для этих целей применяются два клапана. Один для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. Другой клапан для отработанных газов.

Управление первым клапаном осуществляем, помимо прочего, давлением, возникающим во впускном коллекторе. Благодаря этому при сбросе газа немного снижается частота вращения турбинного ротора, а при очередном нажимании на педаль, подача воздуха задерживается на крохотные доли секунды время, пока закрывается клапан.

В современных технологиях используется такой метод регулировки воздухоподачи, как изменение угла наклона компрессорных лопаток. Эта методика разработана давно, но долгое время не получалось применять её на практике. Примером может послужить в данном случае новое устройство наддува дизелей «Экотек» фирмы Opel. Основной недостаток применения турбин короткий срок службы. Это происходит из-за высокой частоты вращения турбинного ротора, которая составляет 150-200 тыс. об/мин.

До сегодняшнего дня ограничение срока службы происходило благодаря долговечности подшипников. Практически, это были особые вкладыши, похожие на вкладыши коленчатого вала, смазываемые под давлением маслом. Степень износа таких подшипников была велика, но шарикоподшипники не могли выдержать высоких температур и высокой частоты вращения. Недавно был найден оптимальный выход. А именно, были разработаны подшипники с применением керамических шариков, заполненных постоянно имеющимся резервом смазки, что делало ненужным канал от нормативной масляной системы движка. В проектах турбинный ротор из металлокерамики, обладающий меньшей инерцией и более лёгким весом (на 20% легче).

Существуют термины «твин-турбо» и «би-турбо». Бывает, что используют параллельно или последовательно две установки турбокомпрессоров, вместо одной. Диапазоны работ роторов управляются разными способами при последовательном наддуве.

Понятие «интеркулер» означает, что при неизбежном нагревании воздуха, который сжимается, в нём уменьшается содержание кислорода и плотность.

Поэтому воздух перед подачей нуждается в охлаждении в радиаторе, дополнительно встроенном, который называется интеркулером.

Как обеспечить максимально эффективную работу турбонаддува в сложных конструктивных условиях?

При запуске двигателя вал начинает обильно смазываться маслом, подающимся на подшипники по каналам. Во время вращения двигателя создаётся давление, под которым турбина нормально действует. При остановке двигателя перестаёт функционировать и масляный насос, а вот вал мгновенно затормозить не может, и работает по инерции уже без смазки.

Чтобы дольше сохранить от износа вал, надо регулярно менять фильтры и масло, которое предназначено именно для турбонаддувных двигателей. И обязательно надо давать двигателю прогреться, не глушить его в один момент, а дать поработать на холостом ходу какое-то время. Это обеспечит запас времени для охлаждения деталей. Целесообразна также установка турбо-таймера, если он не предусмотрен конструктивно в автомобиле.

Первые сигналы того, что надо обращаться в ремонтную контору появление густого белого дыма из глушителя и падение мощности. Это означает износ подшипников и уплотнительного кольца возле турбинной крыльчатки. Резко возрастает расход масла. Случается, что дыма нет, но мощность всё равно низка, а у дизелей регулярный чёрный дым, свидетельствующий об износе наддува и скоплении нагара, что приводит к недостатку воздуха и торможению рабочих оборотов компрессора.

Очевидно, что эксплуатация турбонаддува не является сложной процедурой, необходимо лишь следующее:
1. аккуратность,
2. своевременная смена фильтров и масла,
3. применение определённых сортов масла,
4. осторожность в отношении перегрева турбонаддува по причине долгой езды на высоких оборотах, или дефектов в системе впрыска и зажигания.

Не менее важные моменты состояние воздушного фильтра, его чистота. Нарушение целостности фильтра приводит к прониканию частиц пыли, разрушительно влияющих на срок службы компрессорной крыльчатки и двигателя.

В целом, от того, как мы обращаемся с турбонаддувом, зависит то, какой срок он прослужит.

Следует помнить, что погубить турбонаддув можно в течение двух дней, если при появлении первых симптомов не обратиться сразу в ремонтную фирму. Поэтому не следует затягивать с ремонтом, и желательно выполнять все вышеперечисленные рекомендации для предотвращения возникновения неполадок.

Сообщества › Diesel Power (Дизельные ДВС) › Блог › Разрушители легенд. Турбонаддув дизеля. Часть №1. Обзорно-болталогическая.

Для чего нужна турбина?

Для того чтобы ПОЛНОСТЬЮ сжечь 1кг горючего(любого углеводородного) нужно около 3,5 кг кислорода. Такое количество кислорода содержится в 15кг воздуха.

Соответственно мощность двигателя напрямую зависит от его "литража". Чем больше воздуха мы сможем загнать в камеру сгорания — тем больше топлива мы сможем спалить — тем больше энергии сможем получить на коленвалу.

Турбокомпрессор выполняет две функции. С одной стороны он позволяет напихать в камеру сгорания гораздо больше воздуха и получить с того же объёма двигателя гораздо больше мощности. С другой стороны — он утилизирует энергию выхлопных газов и реализует цикл с продолженным расширением, который увеличивает общий КПД двигателя.
Если сказать человеческим языком — то ЧАСТЬ работы по сжатию воздуха в турбодизеле перекладывается с поршневой на турбокомпрессор. Турбокомпрессор работает на энергии выхлопных газов(которые обычно просто выбрасываются в атмосферу) — соответственно непосредственно сам двигатель получает возможность больше мощности передавать на колёса.

МЕХАНИЧЕСКИЕ нагрузки на кривошипно-шатунный механизм при турбировании ДИЗЕЛЯ возрастают незначительно — это позволяет не сильно морочаться вопросами прочности и ресурса турбируемого атмосферника.

Казалось бы всё замечательно. НО!

Разработка современных двигателей уже давно пляшет от экологического законодательства, которое напрямую определяет режимы сгорания топлива в камере сгорания. На НОМИНАЛЬНОМ(не максимальном! это важно!) режиме работы двигателя в связке с турбиной процессы сгорания доводятся до некоего оптимума. При этом некоторые характеристики конструкции непосредственно самого турбодвигателя получаются заметно отличающимися от его атмосферного аналога. В первую очередь отличается степень сжатия — в цилиндры воздуха поступает больше за счёт турбокомпрессора, но поршнями этот воздух сжимается слабее — фактическое давление в конце такта сжатия практически одинаковое получается и у атмосферника и у турбодвигателя.
На НОМИНАЛЬНОМ РЕЖИМЕ турбокомпрессора.
Потому ничего там в турбодизеле лучше не сгорает. Сказки дедушки Ергена. Лучшее сгорание — больше окислов азота, а это недопустимо. Потому процессы сгорания одинаковы на НОМИНАЛЬНОМ РЕЖИМЕ и однозначно хуже у турбодизеля на всех остальных режимах. Почему?

Давайте посмотрим подробнее, что происходит с турбодизелем на ВСЕХ режимах его работы и насколько отличаются его характеристики от атмосферного дизеля.

В интернет-обзорах обычно втюхивают для сравнения два типа дизелей одинакового ОБЪЁМА. Мне не кажется такое сравнение корректным — это как сравнивать… трёхлитровый двигатель и… пятилитровый…
Я ни разу не встречал сравнения турбодизеля и атмодизеля с разницей в объёме ОБРАТНО-пропорциональной заявляемому с трепетом превосходству турбодизеля. И это неспроста.
Я потому и предлагаю сравнить три дизеля.
Они стары как говно мамонта, но до сих пор бодры и распространены.

Первый(2L) — атмосферный вихрекамерный дизель-прародитель.
Два других — форсированные потомки ОДИНАКОВОЙ МАКСИМАЛЬНОЙ МОЩНОСТИ.

НО!
Один(2LTE) — форсировали турбиной, а другой(5L) — простым наращиванием объёма:
2L… … …22:1…2446куб.см… 85лс 4000RPM…165Н/м 2400RPM…Атмо
2LTE… …21:1…2446куб.см… 97лс 4000RPM…221Н/м 2400RPM…Турбо
5L… … …22:1…2986куб.см… 97лс 4000RPM…192Н/м 2400RPM…Атмо

Эта линейка удобна тем, что это практически один и тот же агрегат до последнего болтика. Потомки 2L имеют одинаковую максимальную мощность и с точки зрения обычного автопотребителя это должны быть абсолютно равнозначные двигатели. Есть куча реальных водителей, попробовавших и то и другое во всех мыслимых и немыслимых режимах — они не дадут соврать. Нихрена это не равнозначные двигатели, хоть МАКСИМАЛЬНАЯ мощность у них и одинаковая.
Вот и давайте немного "поэксплуатируем" эти ДВА дизеля-потомка в реальных условиях:

1). Запуск и холостой ход.
Турбодизель отличается от атмосферного аналога двумя вещами — пониженной степенью сжатия и пониженным литражём. И первое и второе дополняется турбиной. НО! Только на НОМИНАЛЬНОМ РЕЖИМЕ! При работе на холостом ходу и сам турбонагнетатель и интеркулер(если есть) и гораздо более протяжённый впускной коллектор оказывают только лишнее сопротивление. При запуске(особенно на морозе) пониженная степень сжатия турбодизеля способствует худшим пусковым свойствам. Меньший литраж турбодизеля подразумевает несколько меньший расход топлива на холостом ходу — но за счёт меньшей степени сжатия и высоких насосных потерь во впускной системе реальный расход топлива редко отличается заметно.
Итог сравнения — паритет.

2). Режим низких нагрузок и низких оборотов.
Этот режим также характеризуется СОПРОТИВЛЕНИЕМ всего впускного тракта и РАЗРЯЖЕНИЕМ на впуске. Поскольку турбодизель имеет меньший литраж и степень сжатия — то мы имеем на этом режиме НАМНОГО(до 30%) МЕНЬШИЙ момент турбодизеля, чем у атмосферного аналога.
Итог сравнения — явный и несомненный проигрыш турбодизеля.

3). Режим средних нагрузок и оборотов.
Этот режим характеризуется выходом турбонагнетателя на рабочий режим — создание избыточного давления во впускном тракте. Но избыточное — это ещё не НОМИНАЛЬНОЕ. До тех пор, пока давление турбонагнетателя не приблизится к НОМИНАЛЬНОМУ — характеристики турбодизеля будут отставать от характеристик атмосферного аналога.
Из приятных новостей — турбина потихоньку начинает вступать в процесс утилизации энергии выхлопных газов и по мере роста создаваемого ей давления общий КПД двигателя стремительно растёт. Соответственно падает расход топлива по сравнению с атмосферным дизелем.
Итог сравнения — по мере приближения к номинальному режиму характеристики дизелей сближаются. Турбодизель всё так же обладает меньшей мощностью, но и потребляет чуть меньше топлива.
Есть ещё один фактор, который обычно выпускают из поля зрения подобных сравнений. Это инерционность турбонагнетателя. Приотпустив даже на мгновение педаль газа — мы не получим вновь прежнюю мощность от двигателя, пока турбонагнетатель опять не выйдет на режим. Турбояма на этом режиме очень досаждает.
Особенно на высокогорье.

4). Номинальный режим.
Именно на этом режиме проявляются все плюсы турбодизеля. К сожалению на дизеле с примитивным турбонагнетателем этот участок очень узкий — не более 500-700 оборотов. Именно в точке достижения номинального давления турбонагнетатель и обладает максимальным КПД. Потому и двигатель в этой ТОЧКЕ(для 2LTE это приблизительно 2400 оборотов) обладает максимальным превосходством перед атмосферным аналогом в плане расхода топлива. Турбонагнетатель с изменяемой геометрией имеет более широкую полку максимальной эффективности, но обычно она смещена в сторону низких оборотов.
Самый большой плюс — в районе НОМИНАЛЬНОГО режима МОМЕНТ турбодизеля заметно превосходит момент атмосферного аналога. Т.е. и МОЩНОСТЬ турбодизеля на ЭТОМ режиме будет ВЫШЕ мощности атмосферника.
Правда КОЭФФИЦИЕНТ ПРИСПОСОБЛЯЕМОСТИ у турбодизеля по моменту — меньше на 4%, а по оборотам — почти на 8%, соответственно турбодизель ещё хуже, чем даже атмосферный дизель(а уж тем более бензинка) подходит для транспортных средств.
Итог сравнения — явный выигрыш турбодизеля как в плане МОМЕНТА, так и в плане расхода. Отрыв определяется характеристиками турбонагнетателя. Правда "явный" выигрыш — это не значит "большой". Конкретно 2LTE имеет МАКСИМАЛЬНЫЙ момент на 13% больше, чем у 5L и на 25% больше, чем у 2L.
Современные турбодизеля с твинтурбо и эффективным интеркулером могут иметь момент(а потому и мощность) на этом режиме в 1,5-2 РАЗА(!) выше чем у атмосферника. И CommonReal здесь совершенно ни при чём — весь прирост тяги обуславливается исключительно турбонаддувом…

За счёт высокого количества выхлопных газов турбонагнетатель на ЭТОМ режиме "скисает" не сильно даже при полностью отпущенной педали газа и турбояма потому выражена слабо.

5). Сверхноминальный режим — режим близкий к максимальной мощности и максимальным оборотам.
По мере увеличения количества выхлопных газов — часть их начинает перепускаться в обход турбонагнетателя перепускным клапаном — соответственно всё бОльшая часть энергии выхлопных газов перестаёт утилизироваться.
Да и непосредственно сам турбокомпрессор(крайне нелинейный агрегат) стремительно теряет КПД. За счёт всё бОльшего сопротивления турбокомпрессора давление перед турбинным колесом стремительно нарастает — выхлопные газы уже не самостоятельно покидают цилиндр, а их бОльшую часть приходится выдавливать поршнем:

Продувка цилиндров стремительно ухудшается — всё больше отработанных газов остаётся в камере сгорания, количество кислорода снижается, горение затягивается, температура растёт. Получается некая аналогия системы ЕГР. Хоть сама система ЕГР и отключается на этих режимах — это помогает слабо. Турбодизель настолько стремительно теряет момент с ростом нагрузки и оборотов, что на оборотах максимальной мощности сравнивается с атмосферником.
Повышенное давление во впускном коллекторе перестаёт играть положительную роль ПОЛНОСТЬЮ. И даже хуже — затраты на создание этого давления никуда не деваются — потому турбодизель потребляет намного(чуть ли не в разы) больше топлива и потому намного сильнее греется, чем его атмосферный аналог. Шутка ли — у турбодизеля на впуске под 1 атмосферу избытка, у атмосферника на впуске — разрежение на уровне 0.2-0.3атм, а мощность вырабатывается ОДИНАКОВАЯ.
Если же сравнить максимальную мощность атмосферника и турбодизеля одинакового ОБЪЁМА — то выигрыш у турбодизеля всего 12%.
Итог сравнения — очередной провал турбодизеля.

Итак. Что мы имеем в сухом остатке?

Минусы:
БОльший вес и сложность турбодизеля.
Меньший моторесурс и надёжность. Повышенная требовательность к качеству смазочных материалов.
БОльший расход и склонность к перегреву под повышенной нагрузкой.
Высокая нелинейность и латентность мощностных характеристик.
Меньший коэффициент приспособляемости к нагрузке.

Плюсы:
На номинальном режиме турбодизель кушает чуть меньше топлива, при этом обладает небольшим запасом крутящего момента. Потому при необходимости может выдать до 15-20% момента больше, чем атмосферник ОДИНАКОВОЙ МАКСИМАЛЬНОЙ МОЩНОСТИ(и до 20-35% больше чем атмосферник ОДИНАКОВОГО ОБЪЁМА), правда уже при непропорционально бОльшем расходе топлива и тепловыделении.

Эта непропорциональность вызвана не только "насыщением" турбонагнетателя, но и неким "насыщением" топливной аппаратуры. Дизельная топливная аппаратура, как и всё в современном двигателе, заточена под НОМИНАЛЬНЫЙ режим и экологию. Потому впрыск дизельного топлива осуществляется настолько медленно, насколько это возможно. И точкой оптимизации является НОМИНАЛЬНЫЙ режим. Но после превышения номинального режима длительность впрыска(а в существующих ПЛУНЖЕРНЫХ топливных системах количество впрыскиваемого топлива определяется именно ВРЕМЕНЕМ впрыска) становится настолько продолжительной, что значительная часть топлива впрыскивается в камеру сгорания турбодизеля намного позже оптимального момента и больше греет двигатель, чем влияет на его мощность. Этого ПРИНЦИПИАЛЬНОГО недостатка лишены топливные аппаратуры CommonRail, но в реальности двигателя с CommonRail должны соответствовать ещё более жёстким экологическим нормам и потому топливо впрыскивают ещё дольше для борьбы с окислами азота…
При этом выделяется херова туча сажи, которую улавливают сажевым фильтром. Выгорает эта сажа даже в присутствии катализаторов не на всех режимах, потому CommonRail осуществляет дополнительный подвпрыск топлива для поддержания высокой(до +600С) температуры выхлопа. Именно поэтому расход дизелей с CommonRail не настолько низок, как этого следовало бы ожидать…

Конечно, я мог бы сравнивать дизеля одинакового объёма. Тогда недостатки турбодизеля были бы заметно скромнее, а достоинства — выпяченнее. К сожалению жизнь показывает, что при всём прогрессе на замену 4,2 литровому 6-горшковому атмосфэрнику нам почему-то предлагают не 6,5 литрового V8 дизельного твинтурбо, а втюхивают 3-ёх литрового турбозадохлика…
У задохлика крутой нрав и высокая потенция высокий потенциал. "Но пушки есть пушки", как говаривал Рафаэль Саббатини… Объём есть объём и никакая турбина его не переплюнет. Особенно на автомобиле, предназначенном для движения в сложных дорожных условиях.
Потому следующие мои статьи будут посвящены тому — как сделать из задохлика(ZD30) человека.
Дома. На коленке.

Пока же я предлагаю в качестве домашнего задания сравнить аж целых пять реинкарнаций всеми нами любимого ZD30:

Первый(ZD30DD) — атмосферный прямовпрысковый дизель-прародитель:
ZD30DD…18,5:1…2953куб.см…105лс@3800RPM…[email protected]

Второй(ZD30DDT) — турбо-вариант с VGT-турбиной
ZD30DDT…18:1…2953куб.см…148лс@3400RPM…[email protected]

Третий(ZD30DDTi) — турбо-вариа

Принцип работы турбины на дизельном двигателе

В свое время силовые двигатели, усиленные турбиной, встречались только на грузовых машинах, да и то не на всех. Несколько позже стали турбировать и легковые автомобили, предназначенные для гонок. В наше время моторы, оснащенные турбинами, отлично ведут себя на обычном легковом транспорте. Линейный ряд этих двигателей развивается так быстро, что простым моторам внутреннего сгорания уже ничего не осталось, чтобы уступить первенство усовершенствованным аналогам.

Содержание:

Принципиальная схема

Чтобы понимать, как работает турбина, следует ознакомиться с порядком функционирования ДВС.

Как правило, большинство моторов четырехтактные поршневые, их работа всегда под контролем клапанов впускной и выпускной групп. Один цикл работы составляет четыре такта, которые проходят за два полных оборота коленчатого вала.
Принцип работы турбины на дизельном двигателе довольно прост и состоит из следующих действий:

  • впуск – поршень идет вниз, давая возможность проникать воздуху через впускной клапан;
  • компрессия – в этот момент горючая смесь сжимается;
  • процесс расширения – горючее входит под давлением и загорается;
  • выпуск – поршень идет вверх, выпуская газ.

Турбина с изменяемой геометрией

Работа турбонаддува может сопровождаться некоторыми сложностями:
происходит задержка усиления мощности («турбояма») в момент резкого давления на газ;
выход из такого состояния меняется резким повышением воздействия наддува («турбоподхват»).
Возникновение первого явления возможно из-за инерционности системы. Чтобы решить такую проблему, применяют:

  • турбинное устройство с изменяемой геометрией;
  • используют пару параллельных либо последовательных компрессорных устройств;
  • наддув комбинированного вида.

Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Устройство с интеркулером

Как определяется неисправность

Причины отказа работы турбины бывают разные, но к основным признакам этого можно отнести:
значительно понижается динамика, автомобиль «не тянет»;

  1. двигатель долго не выходит на нужную мощность;
  2. из трубы для выхлопных газов появился дымок голубого либо сизого оттенка;
  3. ощущается запах сгоревшего масла;
  4. мотор при работе «кушает» масло;
  5. под капотной крышкой появляются странные звуки;
  6. на холостом ходу движок работает нестабильно.

Порядок проверки

Если нет возможности проверить турбинное устройство в автосервисе, то это можно сделать самостоятельно, не покидая гаража.
Для начала проводится визуальный осмотр устройства. Изучается цвет дыма. Беловатые выхлопы говорят о том, что воздуховоды забиты, либо сливной масляный провод засорен. Если дым напоминает копоть, то подтверждает утечку масла. Сизость дымка говорит о том, что течет масло. После попадания в камеру, оно придает дыму сизоватость. Чтобы убедиться в своей правоте, необходимо снять фильтр очистки воздуха. Если он чист – причину искать следует в другом.

Теперь двигатель следует прогреть и приступить к очередному проверочному этапу, и пригласить на помощь напарника. Ищем патрубок, идущий от турбины к впускному коллектору. Пережав патрубок, даем команду давить на газ несколько секунд. По второй команде педаль резко отпускается. Рука, лежащая на патрубке, будет ощущать, как он расширяется. Это свидетельствует о том, что воздушное давление велико. Если такого не происходит – турбина вышла из строя.
Проще всего, если есть датчик давления турбины. По его работе быстро определяется пригодность турбинного устройства.
Необходимо помнить, что турбина считается довольно чувствительной частью мотора, и способна утратить работоспособность по малейшим причинам. Но продлить ее срок эксплуатации возможно, организовав за двигателем минимальный уход.

Устройство и принцип работы турбокомпрессора

Турбокомпрессор (турбина) — механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.

Конструкция и принцип работы турбины

Классический турбокомпрессор состоит из следующих элементов:

  1. Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
  2. Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
  3. Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
  4. Вал турбины (ось) — соединяет турбинное и компрессорное колеса.
  5. Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
  6. Перепускной клапан — предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.

Принцип работы турбокомпрессора

Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:

  • Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
  • Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
  • Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
  • Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.

Особенности эксплуатации турбин

В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации.

Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.

С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях.

Виды и срок службы турбокомпрессоров

Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект «турбоямы». Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:

  • Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
  • Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.

В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.

Как работает турбина на дизельном двигателе

Однако в то время данный агрегат не встречался на транспортных средствах серийного производства. На сегодняшний день турбоустановкой оснащается каждый второй автомобиль, выпускаемый с конвейера. Несмотря на это, лишь некоторые автовладельцы могут объяснить, как работает данная установка.

Турбина — что это такое

Если не углубляться в подробности, а объяснить простыми словами, то турбина – это механический элемент автотранспортного средства, предназначенное для подачи воздушных масс в полости цилиндров двигателя под определенным давлением нагнетания. Конечная цель установки этого агрегата – это достижение максимально возможных мощностных параметров не изменяя рабочий объем камер сгорания.

При испытании двигателей одинакового объема, отличие которых заключается в оснащении турбонаддувом, результаты измерения мощности в них существенно отличатся. Турбированный двигатель выдает мощность, которая больше чем в полтора раза выше, чем у аналогичного, безтурбинного агрегата.

На это повлиял тот момент, что благодаря подаче воздушной смеси, состоящей из атмосферных и выхлопных газов, под давлением наддува в рабочие камеры цилиндров, горение топливно-воздушной смеси осуществляется намного лучше и результатом этого является повышенная мощностная отдача.

В настоящее время данный агрегат является эффективным не только в плане повышения динамических качеств автомобиля, но позволяет достичь хороших показателей экономичности расхода топлива, а также понижение выбросов в атмосферу токсичных выхлопных газов.

Конструкция турбины дизеля

Непростая геометрия изготовления характеризует конструктивное устройство турбины. Воздушная масса попадает в полость нагнетательного элементы через специальные каналы спиралевидного типа. Диаметр этих каналов постепенно сужается, что обеспечивает влияние на повышение параметров нагнетающего давления турбоустановки.

Тип конструктивного исполнения бывает нескольких типов, в зависимости от вида силовой установки. Дизель оснащен корпусом турбины, который по форме напоминают по форме улитку. Выхлопные газы дизельных установок, работающих на крупногабаритных автомобилях, необходимо разделять.

Это нужно для недопущения возможного возникновения резонанса разрушительного действия. Однако резонанс может быть использован для благих целей.

Например, повышение динамических качеств разгона транспортного средства, на автомобилях, которые прошли модернизацию двигателя и других элементов с помощью чип тюнинга. В основном такие автомобили используют на автомобильных соревнованиях.

Материал изготовления турбинного ротора и оси отличаются, поскольку эксплуатируются они в различных условиях. Изготовление наддува турбины осуществляется в результате выполнения следующих действий: Раскрутка оси турбины и ее ротора до максимальных скоростных показателей позволяет осуществить изготовление неразъемной спайки, путем насаживания ротора турбина на ось.

Также конструкторы нашли способ недопущения передачи тепловой энергии от одного элемента к другому. Он заключается в том, что ось внутри пустая, в месте соприкосновения с поверхностью ротора. Также это помогает охладить сопряженные элементы с большей эффективностью. После всех этих операций, полученное изделие проходит стадию балансировки и центрирования, после чего устанавливается в корпус турбины.

Качественная смазка турбины является важным фактором долговечного функционирования в целом. Система, отвечающая за это, а также динамические уплотнители имеют сложную конструкцию. В связи с этим цена на турбированные агрегаты, поставляемые в сборе, достаточно высокая.

Уплотнители называются динамическими, поскольку давление, создаваемое в разных частях изделия, может быть разное. Это давление неодинаково по причинам, перечисленным далее. Уплотнители, устанавливаемые в пазы, функционируют в качестве преграды, позволяющей обеспечить передачу избыточной температуры в поверхность корпуса наддувного элемента.

Диаметр турбинной оси непостоянный. Создание внутренней геометрией давления, препятствующего попаданию масла в полость ротора. Избыточное количество масляной жидкости поступает в пространство оси турбины, затем передвигается через маслопровод в систему, отвечающую за смазку двигателя автотранспортного средства.

Как работает турбина на двигателе Рено K9K 1.5 DCI

В начале 2000 годов совместно с компанией Nissan, французский автоконцерн начал выпуск с конвейера автотранспортных средств, в котором стоит дизельный двигатель 1.5DCI с индексацией K9K. Производится он по сегодняшний день и его выпуск считается самым массовым среди дизельных двигателей, разработанных компаниями Ниссан и Рено. Устанавливается на такие автомобили, как: Renault, Nissan, Dacia, Suzuki.

В состав конструкции его входят следующие элемента: двигатель, с четырьмя цилиндрами работающий по принципу впрыска топливно-воздушной смеси – Common Rail, система турбонаддува, а также общая топливная рампа.

Этот двигатель способен развить параметры мощности, равные 110 лошадиных сил. В целом, двигатель, при надлежащем обслуживании и своевременно выполнении всех регламентированных ТО, может проехать около 300 тысяч километров, не прибегая к капитальному ремонту.

Основным элементом двигателя, который требует повышенного ухода, это турбоустановка. Если не уделять ему должного внимания и использовать некачественные расходные изделия, такие как фильтра и масла, первые работы по ремонту придется производить уже спустя 60 тыс. км. пробега автотранспортного средства.

Стоимость ее ремонта или замены сильно ударит по кошельку владельца, так что лучше предотвратить возможность возникновения проблем с турбиной.

Как работает на двигателе БМВ тубонаддув: схема

Немецкий автоконцерн использует для установки в свои двигателя систему наддува под названием Twin Turbo. Перевод с английского дает понять, что это означает наличие двух турбинных агрегатов. Первоначальной задачей разработки системы турбирования, являлось организация преодаления инерционности, возникающей в системе.

Однако после тестовых испытаний наблюдалось снижение расхода топливной жидкости, и в то же время увеличение показателей развиваемой мощности. Показатели крутящего момента могут поддерживаться, несмотря на то, что диапазон частот вращения коленчатого вала в двигателе очень широк.

Поэтому в настоящее время именно это направление является основным в сфере модернизации и улучшения систем турбонаддува.

Самый распространенный тип двигателя с Twin Turbo имеет параллельную систему функционирования турбокомпрессоров. Другими словами они работают одновременно и имеют одинаковые параметры давления наддува.

Это происходит потому, что выхлопные газы, двигающиеся по воздушной магистрали, дойдя до входа в систему турбонаддува, делятся на два равномерных потока, после чего попадают в компрессоры.

Затем происходит разгон их с помощью лопастей компрессионных колес, и под давлением выход газов во впускной коллектор. Этот элемент в свою очередь обязан равномерно распределить газы выпуска по цилиндрам, в которых происходит сжигание топливно-воздушной смеси.

1. Клапан перепуска наддува. 2. Управляющий воздухом клапан. 3. Датчик давления. 4. Клапан отработанных газов. 5,7- Турбокомпрессоры. 6. Интеркуллер. 8. Клапан перепуска ОГ.

Турбины Камминз

Cummins-американский автопроизводитель, зарекомендовавший себя, как изготовитель надежных и долговечных установок нагнетания воздушных смесей. В более ранние периоды времени эта компания занималась изготовлениям турбин, устанавливаемых в суды, локомотивы и грузовые автомобили.

В настоящее время, воспользовавшись своим авторитетом, она производит крупносерийный выпуск турбин для легковых автомобилей, и добивается хороших результатов продаж.

Турбины Cummins- это насосы, подающие под высоким давлением воздушные потоки из отработанных и атмосферных газов, в пространство, где происходит цикл сгорания топливно-воздушной смеси. Производятся данные агрегаты только для дизельных силовых установок.

Турбина автомобиля Форд Транзит

В отличие от атмосферных двигателей, турбированный установки Ford Transit осуществляют всасывания потока воздуха в полость впускного коллектора с помощью такого агрегата, как компрессор. Энергия газов выхлопа осуществляет вращательные движения компрессорной установки.

Также, в этот момент осуществляется пропорциональное увеличение объемов воздушной массы и топливной жидкости, поступающих в рабочие камеры двигателя внутреннего сгорания. Два лопастных колеса и вал, соединяющий их друг с другом, входят в состав компрессора автотранспортного средства.

Применения турбины в автомобилях Мазда

Японский завод изготовитель решил отказаться от выпуска двигателей с турбинами. Работники компании считают, что любой турбодвигатель во время эксплуатации не достигает тех параметров экологичности и экономии топлива, которые заявляют в своих презентациях.

Этот вывод исходит из того, что автомобили тестируют в идеальных условиях, не учитывая посторонние факторы. Выпуск автомобилей с системой SkyActive показал, что он может потреблять меньше топлива, чем 1.4 литровый турбированный мотор.

Данные параметры достигаются с помощью высокой степени сжатия бензиновых атмосферных установок автотранспортных средств. Недостатком по сравнению с турбированными установками, являются невысокие динамические качества, однако в современное время это не так актуально.

Турбина Фольксваген Шаран

Моторы данного автомобиля, оснащенные турбиной, имею рабочие объемы двигателей, равные: 1.9, 2.0 и 2.5 литра. Однако самым удачным является мотор с наименьшим объемом. 1.9 TDI отличается высоким сроком службы без требования капитального ремонта, низкой ценой обслуживания и малым расходом топлива.

Однако есть и недостаток: слишком шумная работа. Конструкция турбины очень схожа с аналогичными агрегатами конкурентов. В ее состав входят: компрессор, его входной и выходной валы, клапаны ГБЦ, и каналы для потоков выхлопных газов. Главным отличием является присутствие вентиляционных отверстий, служащих для забора и выталкивания воздуха из корпуса турбокомпрессора.

Как работает турбина на дизельном двигателе: видео при разгоне

Признаки поломки турбины на дизельном двигателе

  1. Автомобиль теряет тягу, динамика разгона нарушена.
  2. Невозможность набора частоты вращения коленвала.
  3. Сизый или голубой цвет выхлопных газов.
  4. Запах гари в салоне.
  5. Амперметр дает некорректные показания выработки генератором силы тока, поскольку функционирование двигателя нарушено.
  6. Уровень масло уменьшается по непонятным причинам.
  7. Звуки, напоминающие свист, из моторного отсека.

Принцип работы турбины с изменяемой геометрией

Он заключается в необходимости изменения входных сечений воздуха на пути в колесо турбины, для получения требуемой мощности сопоставимой с нагрузкой. Пониженные обороты в момент, когда выхлопные газы движутся небольшим потоком, изменяемая геометрия позволяет осуществить прирост частоты вращения турбокомпрессора, не потребляя на эту операцию дополнительного топлива.

Почему нельзя делать ремонт своими руками

Данная операция недопустима для выполнения своими руками. Автомобильная турбина работает на очень высоких частотах вращения, а также температурах, поэтому, требования к ней предъявляются очень высокие.

Система должна быть герметична и попадание любых мелких посторонних предметов в нее во время когда производится ремонт или обслуживание недопустимо. Необходимо специальное оборудование и навыки для разбора и сборки турбины.

Помещение, в котором проводятся данные операции, должно быть максимально чистым, попадание пыли и других веществ на детали турбоустановки может повлечь за собой крупные денежные затраты. Специалисты специализированных сервисных центров имеют точное понятие, как проверить работу турбины.

Как проверить турбину дизельного двигателя и вовремя заметить проблему? Мнение эксперта!

На большинство современных дизельных автомобилей устанавливают турбокомпрессор, поэтому информация о том, как проверить турбину дизельного двигателя, является весьма актуальной. Вот и разберемся в этом вопросе вместе с вами!

Принцип работы турбины дизельного двигателя – что усилит мотор?

Данная автозапчасть значительно увеличивает мощность двигателя посредством энергии выхлопных газов, образуемых в результате сгорания топлива. Дело в том, что во время выброса выхлопных газов значительно снижается КПД, так как теряется целых сорок процентов полезной энергии. Таким образом, если ее преобразовывать, то это значительно увеличит мощность, и двигатель в 100 лошадок сможет работать, как движок в 160 л.с. Безусловно, данные цифры впечатляют, однако не все так просто, как кажется, и необходимо еще знать принцип работы турбины дизельного двигателя.

Устройство турбины дизельного двигателя – что может ей угрожать?

Ни для кого не секрет, что составляющей частью горючей смеси является воздух, и для вытягивания литра топлива требуется как минимум 15 литров воздуха. Так что даже слабые турбированные движки способны работать так же, как и более мощные агрегаты, но не оснащенные данной системой. Правда, есть и некоторые недостатки, ведь устройство турбины дизельного двигателя довольно сложное, и иногда ее стоимость составляет около 10 % стоимости всей машины, так что в случае ее поломки владельцу придется изрядно потратиться.

Самыми распространенными проблемами дизельных турбин являются: недостаточное количество масла либо же загрязнение самой конструкции. В этом случае возникает повышенное трение, приводящее к износу и, как следствие, нарушениям работы всей системы. Также довольно часто на лопатки турбинного или компрессорного колеса попадают посторонние предметы: отломавшиеся части поршней ДВС, клапанов, воздушных фильтров, а также болты, шайбы, гайки и т.д.

Кроме того, не самым благоприятным образом отражаются и неисправности в системе смазки и, конечно же, повышенная температура отработанных газов. Еще одна причина, по которой турбокомпрессоры выходят из строя – неисправность соплового аппарата (заклинивание). Это может быть вызвано выходом из строя электрического или вакуумного привода, отвечающего за изменение геометрии, или попаданием в этот механизм масла и сажи из движка.

Как проверить турбину дизельного двигателя – признаки надвигающихся проблем

Понять, что схема работы турбины дизельного двигателя нарушена, можно по следующим признакам:

  • значительно падает мощность двигателя;
  • из выхлопной трубы валит сизый дым;
  • повышенный расход масла;
  • появляется запах горелого масла;
  • двигатель работает неравномерно на холостых оборотах.

Конечно же, лучше придерживаться правил эксплуатации и предотвратить возникновение поломок данной детали, так как восстановление и установка турбины на дизельный двигатель – довольно дорогостоящие процедуры. Кроме того, ее поломка может вызвать и нарушение работы всего двигателя. Самостоятельно такие операции сделать почти невозможно, если вы не автослесарь высшего разряда с собственной мастерской.

Турбина – дорогая часть авто, это отражается на первоначальной стоимости машины еще в салоне, а потом больно ударит по карману в случае ремонта этого агрегата.

Таким образом, следует следить за уровнем и качеством масла в системе смазки и, конечно же, своевременно его заменять, использовать только высококачественные составы. Также нельзя резко набирать обороты, особенно на недостаточно прогретом движке, недопустим засор масляных каналов, так как это способствует возникновению перебоев в подаче смазки, и, безусловно, нужно своевременное охлаждение турбины дизельного двигателя.

Если топливная смесь будет переобогащенной, т. е. больше топлива, чем воздуха, то в таком случае цвет выхлопа будет черным. К тому же характерная особенность этой проблемы в потери мощности. Происходит это из-за нарушения в работе системы газораспределения. Сизый или белый дым выхлопа свидетельствует о попадании моторного масла в камеры сгорания цилиндров. В это же время расход масла значительно увеличивается.

Далее следует проверить ротор и фильтр турбины. Люфт ротора должен быть незначительным, при этом он не должен задевать стенки корпуса. В противном случае требуется оперативный ремонт.

Если фильтр забит грязью и пылью он не сможет пропускать через себя достаточное количество воздуха. В результате в картридже подшипников и в корпусе турбрнагнетателя создаётся разница в давлении, которая выдавливает масло в компрессор.

Если и фильтр не причина неисправности, дальнейший этап это проверка системы подачи масла, а точнее всех патрубков на наличие трещин и заломов. Для подобной проверки потребуется завести двигатель. Если слышен скрип и свист, значит, есть трещина в патрубке и нужно её устранить. Если есть помощник, то можно передавить патрубок между турбрнагнетателем и впускным коллектором, после чего сильно погазовать. Если трещин нет, патрубок увеличивается в размерах. Для устранения неисправностей, связанных с турбокомпрессором при отсутствии знаний и навыков лучше обратиться к специалистам. В противном случае из-за незначительной неисправности может выйти из строя турбина в целом, что грозит дополнительными финансовыми расходами.

Статья написана по материалам сайтов: techautoport.ru, eronturbo.ru, carnovato.ru.

«

Отличная статья 0

Принцип работы турбины на дизельном двигателе


В свое время силовые двигатели, усиленные турбиной, встречались только на грузовых машинах, да и то не на всех. Несколько позже стали турбировать и легковые автомобили, предназначенные для гонок. В наше время моторы, оснащенные турбинами, отлично ведут себя на обычном легковом транспорте. Линейный ряд этих двигателей развивается так быстро, что простым моторам внутреннего сгорания уже ничего не осталось, чтобы уступить первенство усовершенствованным аналогам.

Содержание:

  1. Принципиальная схема
  2. Турбина с изменяемой геометрией
  3. Устройство с интеркулером
  4. Как определяется неисправность
  5. Порядок проверки

Принципиальная схема

Чтобы понимать, как работает турбина, следует ознакомиться с порядком функционирования ДВС.

Как правило, большинство моторов четырехтактные поршневые, их работа всегда под контролем клапанов впускной и выпускной групп. Один цикл работы составляет четыре такта, которые проходят за два полных оборота коленчатого вала.
Принцип работы турбины на дизельном двигателе довольно прост и состоит из следующих действий:

  • впуск – поршень идет вниз, давая возможность проникать воздуху через впускной клапан;
  • компрессия – в этот момент горючая смесь сжимается;
  • процесс расширения – горючее входит под давлением и загорается;
  • выпуск – поршень идет вверх, выпуская газ.

Турбина с изменяемой геометрией

Работа турбонаддува может сопровождаться некоторыми сложностями:
происходит задержка усиления мощности («турбояма») в момент резкого давления на газ;
выход из такого состояния меняется резким повышением воздействия наддува («турбоподхват»).
Возникновение первого явления возможно из-за инерционности системы. Чтобы решить такую проблему, применяют:

  • турбинное устройство с изменяемой геометрией;
  • используют пару параллельных либо последовательных компрессорных устройств;
  • наддув комбинированного вида.

Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Устройство с интеркулером

При сжатии воздух изменяет не только плотность, но и температурный режим. Для сгорания топлива поступающий кислород довольно полезен, но выпускаемый горячий воздух оказывает разрушительное действие на всю систему. По этой причине используют интеркулер, своего рода радиатор, с помощью которого понижается температура. За счёт этого мощность двигателя увеличивается на 15-20 лошадиных сил.
Смысл работы устройства заключается в том, что горячие воздушные массы подвергаются охлаждению. Может быть воздушным и жидкостным.

Как определяется неисправность

Причины отказа работы турбины бывают разные, но к основным признакам этого можно отнести:
значительно понижается динамика, автомобиль «не тянет»;

  1. двигатель долго не выходит на нужную мощность;
  2. из трубы для выхлопных газов появился дымок голубого либо сизого оттенка;
  3. ощущается запах сгоревшего масла;
  4. мотор при работе «кушает» масло;
  5. под капотной крышкой появляются странные звуки;
  6. на холостом ходу движок работает нестабильно.

Порядок проверки

Если нет возможности проверить турбинное устройство в автосервисе, то это можно сделать самостоятельно, не покидая гаража.
Для начала проводится визуальный осмотр устройства. Изучается цвет дыма. Беловатые выхлопы говорят о том, что воздуховоды забиты, либо сливной масляный провод засорен. Если дым напоминает копоть, то подтверждает утечку масла. Сизость дымка говорит о том, что течет масло. После попадания в камеру, оно придает дыму сизоватость. Чтобы убедиться в своей правоте, необходимо снять фильтр очистки воздуха. Если он чист – причину искать следует в другом.

Теперь двигатель следует прогреть и приступить к очередному проверочному этапу, и пригласить на помощь напарника. Ищем патрубок, идущий от турбины к впускному коллектору. Пережав патрубок, даем команду давить на газ несколько секунд. По второй команде педаль резко отпускается. Рука, лежащая на патрубке, будет ощущать, как он расширяется. Это свидетельствует о том, что воздушное давление велико. Если такого не происходит – турбина вышла из строя.
Проще всего, если есть датчик давления турбины. По его работе быстро определяется пригодность турбинного устройства.
Необходимо помнить, что турбина считается довольно чувствительной частью мотора, и способна утратить работоспособность по малейшим причинам. Но продлить ее срок эксплуатации возможно, организовав за двигателем минимальный уход.

Читайте также:


Турбокомпрессор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 9 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 9 правок. Турбореактивный двигатель

Турбокомпрессор (разговорное «турбина», фр. turbine от лат. turbo — вихрь, вращение) — это устройство, использующее отработавшие газы (выхлопные газы) для увеличения давления внутри камеры сгорания.

Схема турбовентиляторного двигателя
1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.

Основной агрегат, состоящий из доцентрового или осевого компрессора и газовой турбины для его привода, установленных на одном валу, называется турбокомпрессором. Основным назначением турбокомпрессора является повышение давления рабочего тела газотурбинного двигателя за счёт его нагнетания компрессором, который получает мощность от турбины. Турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором, называется газогенератором. Турбокомпрессор низкого давления турбореактивного двигателя (ТРД), состоящий из компрессора низкого давления (вентилятора) и турбины, иногда называют турбаком.[1][2]

Разрез автомобильного турбокомпрессора

В автомобилях турбокомпрессор используется для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания за счет энергии выхлопных газов для улучшения его характеристик.

Для двигателей малой мощности[источник не указан 3047 дней] применяют турбокомпрессоры с центростремительной турбиной, а на двигателях большой мощности[источник не указан 3047 дней] (тракторные, тепловозные, судовые) — с осевой турбиной.[источник не указан 3047 дней] Компрессор всегда центробежный,[источник не указан 3047 дней] так как осевой компрессор имеет более сложную конструкцию и склонность к помпажу. Наименьшие размеры имеют турбокомпрессоры для двигателей легковых автомобилей — диаметр их колёс порядка 50 мм. Наибольшие размеры у судовых турбокомпрессоров — диаметр колёс — до 1,2 м.

Поток отработанных газов, имеющих значительную температуру и давление, через выпускной коллектор поступает в корпус турбины. За счёт давления газов на лопасти колесо турбины вращается (около 15-30 000 об/мин у крупных ТК, до 100 000 об/мин у ТК легковых автомобилей), а поскольку оно напрямую соединено валом с колесом компрессора — компрессор также начинает крутиться, нагнетая воздух во впускной коллектор.

Вал турбокомпрессора вращается в подшипниках, смазываемых маслом под давлением от системы смазки двигателя. Для двигателей небольшой мощности в турбокомпрессорах используют золотниковый механизм. Большая часть отработанных газов через золотник поступает на турбину, а остаток газов через специальный канал в кожухе обходит колесо турбины. Из-за большого давления воздух сильно нагревается, для его охлаждения был разработан интеркулер.

Направляющий аппарат[править | править код]

Направляющий аппарат (спрямляющий аппарат, англ. Inlet guide vanes) — набор лопаток, закрепленных на статоре, задача которых выравнивать воздушный поток между вентиляторными ступенями. Выравнивание шаговой неравномерности потока за лопаточным венцом рабочего колеса производится для повышения аэродинамической эффективности вентиляторных ступеней и снижения уровня шума.[3]Увеличение площади поверхности спрямляющего аппарата повышает аэродинамическое сопротивление и снижает КПД компрессора, так как часть энергии затрачивается на отклонение потока.

Турбонаддув. Есть Плюсы и Минусы — DRIVE2

Двигатель с турбонаддувом. Есть Плюсы и Минусы

Турбонаддув является наиболее эффективной системой повышения мощности двигателя. Помимо повышения мощности турбонаддув обеспечивает экономию топлива и снижение токсичности отработавших газов. В данной статье мы рассмотрим бензиновый и дизельный двигатель с турбонаддувом, а также принцип работы и всего его плюсы и минусы.

Что такое турбонаддув?
Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

Турбонаддув применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов и соответствующий нагрев турбонагнетателя.

Отличительной особенностью двигателя с турбонаддувом является наличие: турбокомпрессора, интеркулера, регулятора давления наддува, предохранительного клапана и других элементов.

Турбокомпрессор — является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа.

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан. Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува.

Также может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана или перепускаться на вход компрессора с помощью байпас-клапана.

Принцип работы двигателя с турбонаддувом
Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.

Минусы двигателя с турбонаддувом
О плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.

Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.

Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Источник vk.com/pubauto ! ВСЕМ МИРА И ДОБРА !


Принцип работы турбины, как работает турбина на дизельном двигателе

Если вам интересно, каков принцип работы турбины на дизельном двигателе, значит вы попали по адресу. О том, что такое дизельный турбокомпрессор и как он работает, вы узнаете в данной статье.

Как работает турбина на дизеле? Как работает турбина в дизельном двигателе?

Итак, турбокомпрессор - это небольшой воздушный насос, которых осуществляет работу всех элементов турбины. Как известно, турбина вращается с помощью особого тока, получаемого от собранных в процессе езды автомобиля газов. Учитывая тот факт, что скорость лопаток турбины разгоняются почти до скорости света, маневренность во время езды на автомобиле с турбиной значительно выше, чем в автомобилях без неё. Во время “зажигания”, турбина соединяется с жесткой осью и подает его в коллектор двигателя. Чем больше воздуха - тем выше мощность двигателя. Такие воздушные подушки позволяют сделать каждую поезду максимально комфортной, эффектной и маневренной. Именно эти причины вынуждают автолюбителей со всего мира покупать турбины высокого класса за доступную цену. Качество работы турбины на дизеле определяется уровнем всасываемого воздуха, уровнем сжатие этого воздуха, соотношении входа и выхода отработанных газов, мощность компрессора и турбины.

Как проверить работает ли турбина на дизеле? Как проверить справность турбины?

Турбина - штука непростая, но стоит всего лишь из корпуса и ротора. Газы, о которых мы говорили выше, попадают в специальных патрубок, проходят по небольшому каналу, ускоряются и приводят в движения лопатки турбокомпрессора. Как видите, принцип работы дизельного двигателя с турбиной заключается в скорости вращения турбины, благодаря переработанному воздуху. Что логично, скорость вращения лопаток напрямую зависит от размеров “улитки” турбины. К примеру, устройство грузовика может в несколько раз превышать размеры устройства легкового автомобиля, так как для полноценной работы турбины в большом агрегате, её корпус должен быть разделен на два отельных канала, которые поочередно перерабатывают воздух. Чтобы максимально облегчить давление воздушного потока, специалисты советуют устанавливать на турбине специальное кольцо. Компрессор, в свою очередь, производится из ротора и корпуса. Лопатки ротора, как правило, изготавливают из надежного алюминия, а форму имеют особую - улиточную. Это необходимо для того, чтобы воздух направлялся строго в центр ротора. Обычный режим работы турбокомпрессора включает в себя большое давление, которое регулярно сжимается. Важно знать, что все динамические прибора работают по принципу разности давлений.

СТО “Центр Турбин” предлагает вашему вниманию услуги по установке, реставрации и ремонту автомобильных турбин. Все наши специалисты имеют колоссальные знания и стаж работы с автомобильными турбинами. Именно поэтому качество наших услуг находится на высоком уровне. Если вы не знаете, какая турбина подходит именно вам, обратите внимание на мобильный номер, указанный на нашем сайте. Наши консультанты с радостью помогут вам выбрать модель турбины, удовлетворяющую все ваши запросы.

Газотурбинный двигатель — Википедия

Газотурбинный двигатель (ГТД) — это воздушный двигатель, в котором воздух сжимается нагнетателем перед сжиганием в нём топлива, а нагнетатель приводится газовой турбиной, использующей энергию нагретых таким образом газов. Двигатель внутреннего сгорания с термодинамическим циклом Брайтона.

То есть сжатый воздух из компрессора поступает в камеру сгорания, куда подаётся топливо, которое, сгорая, образует газообразные продукты с большей энергией. Затем в газовой турбине часть энергии продуктов сгорания преобразуется во вращение турбины, которая расходуется на сжатие воздуха в компрессоре. Остальная часть энергии может передаваться на приводимый агрегат или использоваться для создания реактивной тяги. Эта часть работы двигателя считается полезной. Газотурбинные двигатели имеют большую удельную мощность до 6 кВт/кг.

В качестве топлива используется разнообразное горючее. Например: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск — компрессора, второй — турбины, в промежутке между ними установлена камера сгорания.

Простейшая схема газотурбинного двигателя Схема турбореактивного двигателя

Принцип работы газотурбинного двигателя:

  • всасывание и сжатие воздуха в осевом компрессоре, подача его в камеру сгорания;
  • смешение сжатого воздуха с топливом для образования топливо-воздушной смеси (ТВС) и сгорание этой смеси;
  • расширение газов из-за её нагрева при сгорании топливо-воздушной смеси, что формирует вектор давления газа, направленный в сторону меньшего сопротивления (в направлении лопаток турбины), передача энергии (давления) газа лопатками турбины на диск или вал, в котором эти лопатки закреплены;
  • привод во вращение диска турбины и, вследствие этого, передача крутящего момента по валу с диска турбины на диск компрессора.[1]

Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха, поданного в камеру сгорания. Увеличение количества ТВС (топливо-воздушной смеси) приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше топливный коэффициент полезного действия (если точнее, чем выше разница между «нагревателем» и «охладителем»). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытается рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. Также существует и другой способ утилизации тепла остаточных газов — подача в паровой котёл-утилизатор. Генерируемый котлом пар может быть передан паровой турбине для выработки дополнительной энергии в комбинированном цикле на парогазовой установке, либо использоваться для нужд отопления и ГВС в комбинированном производстве тепла и электроэнергии (когенерация) на газотурбинной ТЭЦ.

Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Вал реактивного двигателя вращается с частотой около 10000 об/мин и микротурбина — с частотой около 100000 об/мин.[2][3]

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Газотурбинная установка (ГТУ) с замкнутым циклом[править | править код]

В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.

Газотурбинная установка (ГТУ) с внешним сгоранием[править | править код]

Большинство ГТУ представляют собой двигатели внутреннего сгорания, но также возможно построить ГТУ внешнего сгорания, которая, фактически, является газотурбинной версией теплового двигателя.[источник не указан 3058 дней]

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолчённая биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе сквозь турбину проходят продукты сгорания. В косвенной системе используется теплообменник, и через турбину проходит чистый воздух. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Одновальные и многовальные газотурбинные двигатели[править | править код]

Простейший газотурбинный двигатель имеет только один вал, куда устанавливается турбина, которая приводит во вращение компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит в движение компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта[4] или корабля, мощные электрогенераторы и так далее), так и дополнительные каскады компрессора самого двигателя, расположенные перед основным. Разбиение компрессора на каскады (каскад низкого давления, каскад высокого давления — КНД и КВД соответственно[5], иногда между ними помещается каскад среднего давления, КСД, как, например, в двигателе НК-32 самолёта Ту-160) позволяет избежать помпажа на частичных режимах.

Также преимущество многовального двигателя в том, что каждая турбина работает при оптимальной скорости вращения и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плохая приёмистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме лёгкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления — большим количеством газов для разгона. Также есть возможность использовать менее мощный стартёр для разгона при пуске только ротора высокого давления.

Система запуска[править | править код]

Для запуска ГТД нужно раскрутить его ротор до определённых оборотов, чтобы компрессор начал подавать достаточное количество воздуха (в отличие от объёмных компрессоров, подача инерционных (динамических) компрессоров квадратично зависит от частоты вращения и поэтому на малых оборотах практически отсутствует), и поджечь подаваемое в камеру сгорания топливо. Со второй задачей справляются свечи зажигания, зачастую установленные на специальных пусковых форсунках, а раскрутка выполняется стартером той или иной конструкции:

  • электростартер, зачастую являющийся стартёр-генератором, то есть после запуска переключающимся в режим генератора постоянного тока 27 вольт. Таковы, например, ГС-24 вспомогательного двигателя ТА-6Б или СТГ-18 турбовинтового двигателя АИ-24 самолёта Ан-24;
  • воздушный турбостартер (ВТС) — небольшая воздушная турбина, получающая воздух от системы отбора (от ВСУ или соседнего работающего двигателя) или наземной установки воздушного запуска (УВЗ). Такие стартёры стоят на двигателях Д-30КП самолёта Ил-76, ТВ3-117 вертолётов Ми-8 и Ми-24 и многих других;
  • турбостартер (ТС) — небольшой турбовальный двигатель, рассчитанный только на раскрутку ротора основного двигателя, на котором он и установлен. Такие стартёры стоят, например, на двигателе АИ-25ТЛ учебно-тренировочного самолёта L-39 и НК-12МВ дальнего бомбардировщика Ту-95. Сам ТС имеет электрозапуск.[6]

Турбореактивный двигатель[править | править код]

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Турбореактивный двигатель с форсажной камерой[править | править код]

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Двухконтурный турбореактивный двигатель[править | править код]

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m > 4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. Применение второго контура в двигателях для военной авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.

Двигатели с малой степенью двухконтурности (m < 2) применяются для сверхзвуковых самолётов, двигатели с m > 2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель[править | править код]

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной. Применяется в гражданской авиации, двигатель имеет большой назначенный ресурс и малый удельный расход топлива на дозвуковых скоростях.

Турбовинтовентиляторный двигатель[править | править код]

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, а, как винт, через редуктор. Двигатель наиболее экономичен, но при этом крейсерская скорость полёта ЛА, с такими типами двигателей, обычно не превышает 550 км/ч, имеются более сильные вибрации и «шумовое загрязнение».

Пример ТВВД — Д-27 грузового самолёта Ан-70.

Турбовинтовой двигатель[править | править код]

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора.[7] Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта — например, Ан-12, Ан-22, C-130. Крейсерская скорость самолётов, оснащённых ТВД, 500—700 км/ч.

Вспомогательная силовая установка (ВСУ)[править | править код]

ВСУ — небольшой газотурбинный двигатель, являющийся автономным источником энергии на борту. Простейшие ВСУ могут выдавать только сжатый воздух, отбираемый от компрессора турбины, который используется для запуска маршевых (основных) двигателей, либо для работы системы кондиционирования на земле (пример, ВСУ типа АИ-9, применяемая на вертолётах и самолёте Як-40). Более сложные ВСУ, помимо источника сжатого воздуха, выдают электрический ток в бортовую сеть, то есть являются полноценным автономным энергоузлом, обеспечивающем нормальное функционирование всех бортовых систем самолёта без запуска основных двигателей, а также при отсутствии наземных аэродромных источников энергии. Такова, например, ВСУ ТА-12 самолётов Ан-124[8], Ту-95МС, Ту-204, Ан-74 и других.

Турбовальный двигатель[править | править код]

Такой двигатель чаще всего имеет свободную турбину. Вся турбина поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Реактивное сопло на турбовальном двигателе отсутствует. Выходное устройство для отработанных газов соплом не является и тяги не создаёт.

Выходной вал ТВаД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Редуктор — непременная принадлежность турбовального двигателя. Скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компрессор у ТВаД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, в нём есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.

Основное применение турбовальный двигатель находит в авиации, по большей части, на вертолётах. Полезная нагрузка в этом случае — несущий винт вертолёта. Известным примером могут служить широко распространённые вертолёты Ми-8 и Ми-24 с двигателями ТВ2-117 и ТВ3-117.

Турбостартёр[править | править код]

ТС — агрегат, устанавливаемый на газотурбинном двигателе и предназначенный для его раскрутки при запуске.

Такие устройства представляют собой миниатюрный, простой по конструкции турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. В качестве примера: турбостартёр ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолёты типа Су-24[9], или ТС-12, устанавливаемый на авиационные двигатели НК-12 самолётов Ту-95 и Ту-142. ТС-12 имеет одноступенчатый центробежный компрессор, двухступенчатую осевую турбину привода компрессора и двухступенчатую свободную турбину. Номинальные обороты ротора компрессора в начале запуска двигателя — 27 тысяч мин−1, по мере раскрутки ротора НК-12 за счёт роста оборотов свободной турбины ТС-12 противодавление за турбиной компрессора падает и обороты возрастают до 30 тысяч мин−1.

Турбостартёр ГТДЭ-117 двигателя АЛ-31Ф также выполнен со свободной турбиной, а стартёр С-300М двигателя АМ-3, стоявшего на самолётах Ту-16, Ту-104 и М-4 — одновальный и раскручивает ротор двигателя через гидромуфту.[10]

Судовые установки[править | править код]

Используются в судовой промышленности для снижения веса. General Electric LM2500 и LM6000 — характерные модели этого типа машин.

Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходами. Они являются разновидностью теплохода. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создаётся при помощи ГТД.

Например, газотурбоход «Циклон-М» с 2 газотурбинными двигателями ДО37. Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в 1986 году. Более таких судов не строили. В военной сфере в этом плане дела обстоят несколько лучше. Примером является десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Железнодорожные установки[править | править код]

Локомотивы, на которых стоят турбовальные газотурбинные двигатели, называются газотурбовозами (разновидность тепловоза). На них используется электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, питает электродвигатели, приводящие локомотив в движение. В 1960-е годы в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревнования с электровозами и в начале 1970-х годов проект был свёрнут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец грузового газотурбовоза, работающий на сжиженном природном газе. ГТ1 успешно прошёл испытания, позднее был построен второй газотурбовоз, с той же силовой установкой, но на другой ходовой части, машины эксплуатируются.

Перекачка природного газа[править | править код]
Газотурбинный двигатель НК-12СТ, используется на магистральных газопроводах ООО «Газпром трансгаз Москва» с 1981 года. По состоянию на 2018 год, в ООО «Газпром Трансгаз Москва» эксплуатируется тридцать таких двигателей.

Принцип работы газоперекачивающей установки практически не отличается от турбовинтовых двигателей, ТВаД используются здесь в качестве привода мощных насосов, а в качестве топлива используется тот же самый газ, который они перекачивают. В отечественной промышленности для этих целей широко применяются двигатели, созданные на базе авиационных — НК-12 (НК-12СТ)[11], НК-32 (НК-36СТ), так как на них можно использовать детали авиадвигателей, выработавшие свой лётный ресурс.

Электростанции[править | править код]

Турбовальный газотурбинный двигатель может использоваться для привода электрогенератора на электростанциях, основу которой составляют один или несколько таких двигателей. Такая электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт.

Однако, газотурбинный двигатель, помимо вращения, также производит большое количество тепла, которое также может быть использовано для производства электроэнергии или теплоснабжения, поэтому наиболее эффективно его применение совместно с котлом-утилизатором. Полученный в котле-утилизаторе пар подаётся в паротурбинную установку, в таком случае вся установка в целом называется парогазовой, либо подаётся в сетевой подогреватель для использования в теплофикации, в таком случае установка называется газотурбинной ТЭЦ.

Парогазовая установка является одним из самых распространённых и эффективных источников электроэнергии, её КПД выше, чем у отдельных паросиловых и газотурбинных установок.

Танкостроение[править | править код]

Первые исследования в области применения газовой турбины в танковых двигателях проводились в Германии Управлением вооружённых сухопутных сил начиная с середины 1944 года. Первым массовым танком с газотурбинным двигателем стал С-танк.

Установка блочного силового агрегата (двигатель — трансмиссия) в танк M1A1

Турбовальные двигатели (ТВаД) установлены на советском танке Т-80 (двигатель ГТД-1000Т) и американском М1 Абрамс. Газотурбинные двигатели, устанавливаемые на танках, имеют при схожих с дизельными размерах гораздо бо́льшую мощность, меньший вес и меньшую шумность, меньшую дымность выхлопа. Также ТВаД лучше удовлетворяет требованиям многотопливности, гораздо легче запускается, — оперативная готовность танка с ГТД, то есть запуск двигателя и последующий вход в рабочий режим всех его систем, занимает несколько минут, что для танка с дизельным двигателем в принципе невозможно, а в зимних условиях при низких температурах дизелю требуется достаточно длительный предпусковой прогрев, который не требуется ТВаД. Из-за отсутствия жёсткой механической связи турбины и трансмиссии на застрявшем или просто упёршемся в препятствие танке двигатель не глохнет. В случае попадания воды в двигатель (утоплении танка) достаточно выполнить так называемую холодную прокрутку ГТД для удаления воды из газовоздушного тракта и после этого двигатель можно запускать — на танке с дизельным двигателем в аналогичной ситуации происходит гидроудар, ломающий детали цилиндро-поршневой группы и непременно требующий замены двигателя.

Однако из-за низкого КПД газотурбинных двигателей, установленных на тихоходных (в отличие от самолётов) транспортных средствах, требуется гораздо большее количество возимого топлива для сравнимого с дизельным двигателем километрового запаса хода. Именно из-за расхода топлива, невзирая на все достоинства, танки типа Т-80 поэтапно выводятся из эксплуатации. Неоднозначным оказался опыт эксплуатации танковых ТВаД М1 Абрамс в условиях высокой запылённости (например в песчаных пустынях). В отличие от него, Т-80 благополучно может эксплуатироваться в условиях высокой запылённости, — конструктивно хорошо продуманная система очистки поступающего в двигатель воздуха на Т-80 надёжно защищает ГТД от песка и пыли. «Абрамсы», напротив, «задохнулись» — во время двух кампаний против Ирака при прохождении пустынь довольно много «Абрамсов» встали, так как их двигатели забились песком[источник не указан 761 день].

Автостроение[править | править код]
STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газотурбинным двигателем Pratt & Whitney. A 1968 Howmet TX — единственный в истории газотурбинный двигатель, принёсший победу в автомобильной гонке.

Множество экспериментов проводилось с автомобилями, оснащёнными газовыми турбинами.

В 1950 году дизайнер Ф. Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировали первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решётки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в лондонском Музее науки.

Команды Rover и British Racing Motors (Формула-1) объединили усилия для создания Rover-BRM, автомобиля с приводом от газовых турбин, который принял участие в гонке 24 часа Ле-Мана 1963 года, управляемого Грэмом Хиллом и Гитнером Ричи. Этот автомобиль показал среднюю скорость 173 км/ч, максимальную — 229 км/ч.

Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке «Инди-500»; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 году глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Единственная серийная модель «семейного» газотурбинного автомобиля для использования на дорогах общего пользования была выпущена Chrysler в 1963—1964 года. Компания передала пятьдесят собранных вручную машин в кузовах итальянского ателье Ghia добровольцам, которые испытывали новинку в обычных дорожных условиях до января 1966 года. Эксперимент прошёл удачно, но компания, не располагавшая средствами для постройки нового моторного производства, отказалась от массового выпуска автомобиля с ГТД. После ужесточения экологических стандартов и взрывного роста цен на нефть компания, с трудом пережившая финансовый кризис, отказалась от продолжения разработок[12].[13]

В 1791 году английский изобретатель Джон Барбер получил патент за номером 1833, в котором описал первую газовую турбину.[14]

В 1892 году русский инженер П. Д. Кузьминский конструировал и построил первый в мире ГТД с газовой реверсивной турбиной радиального типа с 10 ступенями давления.[15] Турбина должна была работать на парогазовой смеси, которая получалась в созданной им же камере сгорания — «газопаророде».[16]

В 1906—1908 году русский инженер В. В. Кароводин сконструировал газовую турбину взрывного типа (турбину постоянного объёма).[17] Бескомпрессорный ГТД Кароводина с 4 камерами прерывистого сгорания и газовой турбиной при 10 000 об/мин развивал мощность 1,2 квт (1,6 л. с.).[18]

В 1909 году русский инженер Н. Герасимов запатентовал ГТД, использующийся для реактивного движения, то есть по сути — первый турбореактивный двигатель (привилегия № 21021, 1909 г.).[19][20][21]

В 1913 г., М. Н. Никольский спроектировал газотурбинный двигатель мощностью 120 кВт (160 л. с.), у которого было три ступени газовой турбины.[22][23]

Дальнейшие усовершенствования в конструкцию газотурбинных двигателей внесли В. И. Базаров (1923 г.), В. В. Уваров и Н. Р. Брилинг (1930—1936 гг.).[24][25]

В 1930-е годы огромный вклад в развитие газотурбинных технологий внесла группа конструкторов под руководством академика АН СССР А. М. Люльки. Главные работы конструктора касались турбореактивных двигателей с центробежным лопастным компрессором, которые стали основными для авиации.[26][27][28][29]

Как и у любого теплового двигателя, у ГТД есть множество параметров, которые необходимо контролировать для эксплуатации двигателя в безопасных, а по возможности и экономичных режимах. Измеряются с помощью приборов контроля.

  • Обороты — контролируются для оценки режима работы двигателя и недопущения опасных режимов. У многовальных двигателей, как правило, контролируются обороты всех валов — например, на Як-42 для контроля оборотов всех трёх валов каждого двигателя Д-36 установлен трёхстрелочный тахометр ИТА-13[30], на Ан-72 и Ан-74, оснащённых такими же двигателями Д-36 — три двухстрелочных тахометра, два стоят на приборной доске пилотов и показывают один обороты роторов вентиляторов, второй обороты роторов ВД, третий установлен на пульте предполётной подготовки и показывает обороты роторов НД.
  • Температура выходящих газов (ТВГ) — температура газов за турбиной двигателя, как правило, за последней ступенью[5], так как температура перед турбиной слишком высока для надёжного измерения. Температура газов показывает тепловую нагрузку на турбину и измеряется с помощью термопар. Также от термопар может работать автоматика, срезающая расход топлива или вовсе выключающая двигатель при превышении ТВГ — СОТ-1 на двигателе ТА-6[1], РТ-12 на двигателе НК-8 и так далее.

Конструкторы газотурбинных двигателей и основанные ими КБ[править | править код]

Устройство и принцип работы турбины

Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

Что такое турбина и для чего она нужна?

Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины –  с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

Принцип работы турбокомпрессора

Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

Устройство турбины

 

Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.

Система охлаждения турбин

Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два  самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:

  • Более простая конструкция
  • Меньшая стоимость изготовления самой турбины

Недостатки:

  • Меньшая эффективность охлаждения по сравнению с комплексной системой
  • Более требовательна к качеству масла и к его более частой смене
  • Более требовательна к контролю за температурным режимом масла

Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию  и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

Комплексное охлаждение маслом и антифризом
Преимущества:

  • Большая эффективность охлаждения

Недостатки:

  • Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина  выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT),  изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

Такая систем турбонаддува используется в автомобилях BMW biturbo.

Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и  «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

Как работает турбина на дизельном двигателе: особенности, устройство — RUUD

Содержание статьи:

Решение использовать энергию выхлопных газов для раскручивания ротора стало гениальной идеей. Она в будущем позволила разработать дизельный турбо двигатель и повысить мощность минимум на 50 процентов. При том что в процессе работы двигателя в обычном режиме процесс выброса газов снижает КПД на 40 процентов. Давайте рассмотрим, как работает турбина на дизельном двигателе, каково ее устройство.

Из истории

На самом деле идея использовать мощность выхлопных газов не давала покоя инженерам практически с самого начала изобретения ДВС. Немецкие инженеры, которые занимались строительством автомобилей и тракторов вместе с Дизелем и Даймлером, стали заниматься опытами, в ходе которых пытались повысить мощность двигателя и снизить расход горючего с помощью нагнетания сжатого воздуха на базе энергии выхлопа.

Вам будет интересно:"Лада-Ларгус" автомат: описание модели, отзывы

Первый турбиностроитель

Однако первый человек, который построил один из самых первых эффективных турбокомпрессоров, это отнюдь не Даймлер, и даже не Дизель. Первым инженером, построившим турбину, считается Альфред Бюхи. Патент на данное изобретение был получен в 1911 году. Первая турбина имела такую конструкцию, что эксплуатировать ее можно было только на больших судовых моторах. Применение компрессоров на дизельных авто смысла не имело.

Вам будет интересно:«Рено-Логан»: размеры, технические характеристики и обзор

Затем турбины стали применять в авиации. С 30-х годов в США регулярно серийно производили военные самолеты, бензиновые моторы которых комплектовались турбинами. Первый в истории грузовик, оснащенный турбированным дизелем, был построен в 38-м году.

В 60-х силами «Дженерал Моторс» были выпущены первые модели легковых «Шевроле» и «Олдсмобиль» с бензиновыми карбюраторными моторами с наддувом. Первые компрессоры, правда, не отличались большой надежностью, поэтому с автомобильного рынка они быстро исчезли.

Снова в моде

Мода на турбированные двигатели стала возвращаться. В период с 70-х до 80-х годов системы турбонаддува стали очень популярными в спортивных и гоночных авто. В фильмах той эпохи все супергерои нажимали на кнопку «турбо», и автомобиль стремительно уходил в закат. Но кино – это кино, а в реальности те первые турбокомпрессоры отставали в эффективности и технологичности, как и тормозила их скорость реакции. И эти агрегаты не только не экономили топливо, но и существенно увеличивали его расход. Тогда еще не шло речи об актуаторе турбины. Принцип работы и настройка еще не были до конца понятны.

Более-менее успешные попытки внедрить наддув в автомобильные серийные моторы проводились в 80-х компаниями «Мерседес» и SAAB. А уже затем, основываясь на этом передовом опыте, подключились и другие мировые автобренды.

В СССР также разрабатывались и внедрялись в серию турбированные моторы. Но здесь турбины применяли в тяжелых сельскохозяйственных и промышленных тракторах, на самосвалах и другой мощной технике.

Почему дизельная турбина популярнее?

Почему же она стала очень распространена именно на дизелях, а не на бензиновых ДВС? Все очень просто. Достаточно понять, как работает турбина на дизельном двигателе. Также нужно помнить, что дизель обладает более высокой степенью сжатия. Выхлопные газы дизеля более холодные. Поэтому к такой турбине предъявляются гораздо меньшие требования по жаропрочности, а эффективность наддува гораздо выше по сравнению с бензиновыми двигателями.

Устройство наддува

Наддув состоит из двух отдельных частей. Это непосредственно турбина и компрессор. Турбина необходима для преобразования энергии выхлопных газов. Компрессор отвечает за подачу сжатого воздуха в камеры сгорания.

Чем больше сжатого воздуха будет подано в цилиндры дизельного мотора, тем больше топлива двигатель сможет потребить за единицу времени. Как результат – значительное повышение мощности без увеличения объемов. Отсюда становится понятно, как проверить турбину на дизельном двигателе – патрубок от коллектора к компрессору должен раздуваться при повышении оборотов.

В основе системы лежит ротор, который крепится на оси. Вся эта конструкция заключена в корпус, способный выдержать высокие температуры. Ротор также изготовлен из жаропрочных сплавов – он без перерывов контактирует с выхлопными газами высокой температуры.

Ось и крыльчатка турбины или колесо с лопастями при работе двигателя вращаются. Частота вращения очень высокая. При этом крыльчатка и ось вращаются в разных направлениях. За счет этого осуществляется более плотный прижим двух элементов друг к другу. Поток газов попадает в выпускной коллектор, а затем в специальный канал – он имеется в корпусе компрессора. Корпус имеет форму улитки. Когда газы пройдут через эту улитку, то затем они на большой скорости подаются к ротору. Это и есть принцип работы турбины на дизельном двигателе.

Ось нагнетателя вращается в специальных подшипниках скольжения. Смазка осуществляется от системы смазки двигателя. Чтобы масло не убегало, турбина оснащается уплотнительными прокладками и кольцами. Эти прокладки защищают узел от прорыва воздуха и газов, а также предотвращают их смешивание. Естественно, полностью исключить возможность попадания газов в воздух не получается, но и большая необходимость в этом отсутствует.

Как это работает?

Мы познакомились с устройством механизма. Теперь стоит узнать, как работает турбина на дизельном двигателе автомобиля.

Чем больше топлива сгорит за одну единицу времени, тем больше воздуха нужно закачать в двигатель. Сам мотор не способен справиться с получением избыточного количества сжатого воздуха. Это и есть основная задача системы турбонаддува – нужно наращивать подачу воздуха в камеру сгорания. Нагнетание осуществляется за счет преобразования энергии выхлопных газов в полезную работу. Прежде чем газы вылетят в трубу, они пройдут через турбину и компрессор. Вот как работает турбина. Принцип действия ее прост для понимания.

Процесс прохождения газов заставляет раскручиваться крыльчатку турбины. Она имеет лопасти. Среднее число оборотов составляет более 150 тысяч оборотов в минуту. На этом же валу, что и крыльчатка, крепится и вал компрессора. Сила, полученная в результате преобразования энергии газов, применяется для значительного повышения давления воздуха. Это позволяет подавать в цилиндры намного больше горючего, что и дает значительный прирост мощности и коэффициента полезного действия дизельного силового агрегата.

Вот как работает турбина на дизельном двигателе автомобиля. На самом деле по принципу и устройству данные механизмы очень похожи на бензиновые турбины.

Актуаторы

Много десятков лет понадобилось инженерам, чтобы разработать и построить эффективный нагнетатель. Это только теоретически выглядит очень хорошо. На самом деле все значительно сложней.

При резком нажатии на газ роста оборотов двигателя нужно подождать. Обороты начинают расти через некоторое время. Повышение давления газов, раскручивание крыльчатки турбины, закачивание сжатого воздуха проходит постепенно. Это турбояма, и победить эту проблему не получалось. Но с проблемой все-таки справились внедрением клапанов или актуаторов. Один нужен для перепускания лишнего воздуха через трубопровод из коллектора, второй – для выхлопных газов. Клапан позволяет сбрасывать лишнее давление, когда мотор работает на высоких оборотах. Давайте посмотрим, как работает актуатор турбины дизельного двигателя.

Принцип работы

Главная задача, которую должен он решить, – это снижение давления на высоких оборотах. Клапан установлен в выпускном коллекторе. Работает он крайне просто. При росте оборотов и давления вакуумный клапан пускает газы мимо крыльчатки турбины. В этот момент актуатор открывается, и газы выходят через него. Через клапаны всасывается больше воздуха, чем нужно, чтобы максимально разогнать компрессор.

Возможна регулировка актуатора турбины. Способы и особенности заключатся в замене пружины, настройке конца клапана и в монтаже буст-контроллера. Это позволяет регулировать работу турбины.

Источник


Смотрите также