8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Кпд парового двигателя


Альтернативная и малая энергетика на паровом двигателе

 

ПАРОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ и ПАРОВОЙ АКСИАЛЬНО- ПОРШНЕВОЙ ДВИГАТЕЛЬ

     Паровой роторный  двигатель   (паровая машина роторного типа) является уникальной  силовой машиной, развитие производства которой до настоящего времени  не получило должного развития.

С одной стороны-  разнообразные конструкции роторных двигателей  существовали ещё в последней трети 19-го века и даже неплохо работали, в том числе и для привода динамо-машин с целью выработки электрической энергии и электроснабжения всяких объектов.  Но качество и точность изготовления таких  паровых двигателей (паровых машин) было весьма примитивным, поэтому они  имели  малый КПД  и невысокую мощность.   С тех пор малые паровые машины  ушли в прошлое, но вместе  с действительно малоэффективными  и бесперспективными  поршневыми паровыми машинами в прошлое ушли и имеющие хорошую перспективу паровые роторные двигатели.


Главная причина- на уровне технологий конца 19-го века  сделать действительно качественный, мощный и долговечный роторный двигатель не представлялось возможным.
Поэтому из всего многообразия паровых двигателей и паровых машин  до нашего времени благополучно и активно дожили лишь паровые турбины огромной мощности (от 20 мВт и выше), на которых  сегодня осуществляется около 75%  выработки электроэнергии в нашей  стране. Еще паровые турбины большой мощности дают энергию от  атомных реакторов в боевых подводных лодках-ракетоносцах и на больших арктических ледоколах.  Но это все огромные машины. Паровые турбины резко теряют всю свою эффективность  при уменьшении их размеров.

…. Именно поэтому  силовых паровых машин и паровых двигателей мощности ниже 2000 — 1500 кВт (2 — 1,5 мВт), которые бы эффективно  работали  на паре, получаемом от  сжигания дешевого твердого топлива и различных бесплатных  горючих отходов, сейчас в мире нет.
Вот  в этой –то пустой сегодня области техники (и абсолютно голой, но очень нуждающейся в  товарном предложении коммерческой нише),  в этой рыночной нише силовых машин небольшой мощности,  могут и должны занять своё очень достойное  место  паровые роторные двигатели. И потребность в них только  в нашей стране — на десятки и десятки тысяч… Особенно такие малые и средние по мощности силовые машины  для автономное электрогенерации и независимого электроснабжения нуждаются малые и средние предприятия в отдаленных от больших городов и крупных электростанций местностях: — на малых лесопилках, отдаленных приисках, на полевых станах и  лесных делянках, и пр. и др.
…..

..
Давайте рассмотрим  показатели, из-за которых   паровые роторные двигатели  оказываются лучше, чем их ближайшие сородичи  — паровые машины в образе поршневых паровых   двигателей и паровых  турбин.
…— 1)
Роторные двигатели являются силовыми машинами объемного расширения – как поршневые двигатели. Т.е. они обладают небольшим потреблением пара на единицу  мощности, потому что пар подается в их рабочие полости время от времени, и строго дозированными порциями, а не  постоянным обильным потоком, как в паровых турбинах.  Именно поэтому  паровые роторные двигатели гораздо экономичнее паровых турбин на единицу выдаваемой мощности.
  —  2)  Роторные паровые двигатели имеют  плечо приложения действующих газовых сил (плечо крутящего момента) значительно (в разы) больше, чем  поршневые паровые двигатели. Поэтому  развиваемая ими мощность гораздо выше, чем у  паровых поршневых машин.
 —   3)  Паровые роторные двигатели имеют гораздо  большее рабочий ход, чем поршневые паровые двигатели,  т.е. имеют возможность  переводить  большую часть  внутренней  энергии пара в  полезную работу.
 —  4)  Паровые роторные двигатели  могут эффективно работать на насыщенном (влажном) паре, без  затруднений допускать  конденсацию  значительной части пара  с переходом её в воду прямо в рабочих секциях парового роторного двигателя.  Это так же повышает КПД работы паросиловой установки с использованием   парового роторного двигателя.
 —  5) Паровые роторные двигатели  работают  на оборотах в 2-3 тыс.  оборотов в минуту, что является оптимальной частотой вращения для выработки электричества, в отличие от слишком тихоходных поршневых двигателей (200-600 оборотов в минуту) традиционных паровых машин паровозного типа, или от слишком быстроходных турбин (10-20 тыс. оборотов в минуту).

При этом технологически паровые роторные двигатели относительно просты в изготовлении, что  делает затраты на их изготовление относительно невысокими.   В отличие от крайне дорогостоящих в производстве паровых турбин.

ИТАК, КРАТКИЙ ИТОГ ЭТОЙ СТАТЬИ —  паровой роторный двигатель является весьма эффективной паровой силовой машиной для  преобразования  давления пара от тепла сгорающего твердого топлива и  горючих отходов  в механическую мощность и в электрическую энергию.

 

 

Автором  настоящего сайта, уже  получены более 5 патентов на изобретения по  разным  аспектам  конструкций  паровых роторных двигателей. А так же произведено некоторое количество небольших роторных двигателей  мощностью от 3 до 7 кВт. Сейчас идет проектирование паровых роторных двигателей мощностью от 100 до 200 кВт.
Но у роторных двигателей есть «родовой недостаток» — сложная система уплотнений, которые для маленьких по размерам двигателей оказываются слишком сложными, миниатюрными и дорогими в изготовлении.

При этом автором сайта  ведется разработка паровых аксиально поршневых  двигателей с оппозитным — встречным движением поршней. Данная компоновка является наиболее энерго — производительной по мощности вариацией из всех возможных схем применения поршневой системы.
Данные двигатели в малых размерах получаются несколько дешевле и  проще роторных моторов и уплотнения в них использхуються самые традиционные и самые простые.

Внизу размещено видео использования маленького аксиально-поршневого оппозитного двигателя с встречным движением поршней.

В настоящее время идет изготовление  такого аксиально-поршневого оппозитного двигателя на 30 кВт.   Ресурс двигателя ожидается в несколько сотен  тысячах моточасов ибо обороты парового двигателя в 3-4 раза ниже оборотов двигателя внутреннего сгорания, в пара трения «поршень- цилиндр» — подвергнута ионно -плазменному азотированию в вакуумной среде и твердость поверхностей трения составляет 62-64 ед по HRC.  Подробно о процессе упрочения поверхности методом азотирования смотри ТУТ.


Вот анимация принципа работы похожего по компоновке  такого аксиально- поршневого оппозитного двигателя с встречным движением поршней

 

Первые пуски малого парового роторного двигателя

 

….. Многие посетители моего сайта спрашивают — а каково потребление твердого топлива в таких малых паро-силовых установках а единицу мощности?
…. Отвечаю — на угле на 1 квт-час выработки электричества идет  расход примерно 1,2 — 1,3 кг угля, или 1,6 — 2 кг дров, щепы, опила — в зависимости от их влажности.

*        *       *

Следующая страница — «Паровые Машины Прошлого».

Перейти   –                      страница о «Твердом Топливе»

Паровые двигатели - Первая поровая машина

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы

212 лет паровому автомобилю! 7 мифов о паровой тяге

Ровно 212 лет назад, 24 декабря 1801 года, в небольшом английском городе Камборне механик Ричард Тревитик продемонстрировал общественности первый автомобиль с паровым двигателем Dog Carts. Сегодня это событие можно было бы смело отнести в разряд хоть и примечательных, но несущественных, тем более что паровой двигатель был известен и ранее, и даже применялся на транспортных средствах (хотя назвать их автомобилями было бы очень большой натяжкой)… Но вот что интересно: именно сейчас технический прогресс породил ситуацию, поразительно напоминающую эпоху великой «битвы» пара и бензина в начале XIX века. Только бороться предстоит аккумуляторам, водороду и биотопливу. Хотите узнать, чем все закончится и кто победит? Не буду подсказывать. Намекну: технологии ни при чем…

1. Увлечение паровыми двигателями прошло, и наступило время двигателей внутреннего сгорания. Для пользы дела повторю: в 1801 году по улицам Камборна покатился четырёхколёсный экипаж, способный с относительным комфортом и небыстро перевозить восемь пассажиров. Автомобиль приводился в движение одноцилиндровым паровым двигателем, а топливом служил уголь. Созданием паровых транспортных средств занялись с энтузиазмом, и уже в 20-х годах XIX века пассажирские паровые омнибусы перевозили пассажиров со скоростью до 30 км/час, а средний межремонтный пробег достиг 2,5–3 тыс. км.

Теперь сопоставим эти сведения с другими. В том же 1801 году француз Филипп Лебон получил патент на конструкцию поршневого двигателя внутреннего сгорания, работавшего на светильном газе. Случилось так, что через три года Лебон погиб, и развивать предложенные им технические решения пришлось другим. Лишь в 1860 году бельгийский инженер Жан Этьен Ленуар собрал газовый двигатель с зажиганием от электрической искры и довёл его конструкцию до степени пригодности к установке на транспортное средство.

Итак, автомобильные паровой двигатель и двигатель внутреннего сгорания — практически ровесники. КПД паровой машины той конструкции и в те годы составлял около 10%. КПД двигателя Ленуара был всего 4%. Только через 22 года, к 1882-му, Август Отто усовершенствовал его настолько, что КПД теперь уже бензинового двигателя достиг… аж 15%.

2. Паровая тяга — всего лишь краткий миг в истории прогресса. Начавшись в 1801 году, история парового транспорта активно продолжалась без малого 159 лет. В 1960-м (!) в США всё ещё строились автобусы и грузовики с паровыми двигателями. Паровые машины за это время усовершенствовались весьма значительно. В 1900 году в США 50% парка автомобилей были «на пару». Уже в те годы возникла конкуренция между паровыми, бензиновыми и — внимание! — электрическими экипажами. После рыночного успеха «Модели-Т» Форда и, казалось бы, поражения парового двигателя новый всплеск популярности паровых авто пришёлся на 20-е годы прошлого столетия: стоимость топлива для них (мазут, керосин) была значительно ниже стоимости бензина.

Фирма Stanley производила до 1927-го примерно 1 тыс. паровых автомобилей в год. В Англии паровые грузовики успешно конкурировали с бензиновыми до 1933 года и проиграли лишь по причине введения властями налога на тяжёлый грузовой транспорт и снижения тарифов на импорт жидких нефтепродуктов из США.

3. Паровая машина неэффективна и неэкономична. Да, когда-то это было именно так. «Классический» паровой двигатель, который выпускал отработанный пар в атмосферу, имеет КПД не более 8%. Однако паровой двигатель с конденсатором и профилированной проточной частью имеет КПД до 25–30%. Паровая турбина обеспечивает 30–42%. Парогазовые установки, где используются «в связке» газовые и паровые турбины, имеют КПД до 55–65%. Последнее обстоятельство подвигло инженеров компании BMW начать проработки вариантов использования этой схемы в автомобилях. К слову сказать, КПД современных бензиновых двигателей составляет 34%.

Реклама на Компьютерре

Стоимость изготовления парового двигателя во все времена была ниже стоимости карбюраторного и дизельного моторов той же мощности. Расход жидкого топлива в новых паровых двигателях, работающих в замкнутом цикле на перегретом (сухом) пару и оснащённых современными системами смазки, качественными подшипниками и электронными системами регулирования рабочего цикла, составляет всего 40% от прежнего.

4. Паровой двигатель медленно запускается. И это было когда-то… Даже серийные автомобили фирмы Stanley «разводили пары» от 10 до 20 минут. Усовершенствование конструкции котла и внедрение каскадного режима нагрева позволило сократить время готовности до 40–60 секунд.

5. Паровой автомобиль слишком нетороплив. Это не так. Рекорд скорости 1906 года — 205,44 км/час — принадлежит паровому автомобилю. В те годы автомобили на бензиновых моторах так быстро ездить не умели. В 1985-м на паровом автомобиле разъезжали со скоростью 234,33 км/час. А в 2009 году группа британских инженеров сконструировала паротурбинный «болид» с паровым приводом мощностью 360 л. с., который был способен перемещаться с рекордной средней скоростью в заезде — 241,7 км/час.

6. Паровой автомобиль дымит, он неэстетичен. Рассматривая старинные рисунки, на которых изображены первые паровые экипажи, выбрасывающие из своих труб густые клубы дыма и огня (что, кстати, свидетельствует о несовершенстве топок первых «паровиков»), понимаешь, откуда взялась стойкая ассоциация паровой машины и копоти.

Что касается внешнего вида машин, дело тут, конечно, зависит от уровня дизайнера. Вряд ли кто-то скажет, что паровые автомобили Абнера Добля (США) некрасивы. Напротив, они элегантны даже по теперешним представлениям. И ездили к тому же бесшумно, плавно и быстро — до 130 км/час.

Интересно, что современные изыскания в области водородного топлива для автомобильных моторов породили ряд «боковых ответвлений»: водород в качестве топлива для классических поршневых паровых двигателей и в особенности для паротурбинных машин обеспечивает абсолютную экологичность. «Дым» от такого мотора представляет собой… водяной пар.

7. Паровой двигатель капризен. Это неправда. Он конструктивно значительно проще двигателя внутреннего сгорания, что само по себе означает большую надёжность и неприхотливость. Ресурс паровых моторов составляет многие десятки тысяч часов непрерывной работы, что не свойственно другим типам двигателей. Однако этим дело не ограничивается. В силу принципов работы паровой двигатель не теряет эффективности при понижении атмосферного давления. Именно по этой причине транспортные средства на паровой тяге исключительно хорошо подходят для использования в высокогорье, на тяжёлых горных перевалах.

Интересно отметить и ещё одно полезное свойство парового двигателя, которым он, кстати, схож с электромотором постоянного тока. Снижение частоты вращения вала (например, при возрастании нагрузки) вызывает рост крутящего момента. В силу этого свойства автомобилям с паровыми моторами принципиально не нужны коробки передач — сами по себе весьма сложные и порой капризные механизмы.

Паровой автомобильный транспорт сегодня

Ренессанс парового грузовика

Иван Трохин, инженер
Фото НАМИ, cyclonepower.com, busmanjohn.files.wordpress.com, steamautomobile.com, stanleysteamcarparts.co.uk, beamishtransportonline.co.uk

Паровой транспорт, как сегодня считается, давно остался в прошлом. Однако возрождение, в частности, паровых грузовиков и автобусов (паробусов) представляется реальностью на современном уровне развития техники и технологии машиностроения. Это подтверждают зарубежные специалисты.

Наши пар и дрова

Идея создания современного, неприхотливого в эксплуатации, надёжного и работающего на дешёвом топливе парового грузовика занимала умы изобретателей и конструкторов после Великой Отечественной войны, когда эпоха пара в технике всё более уверенно вытеснялась дизельной. Историкам автомобильной техники хорошо известен отечественный паровой грузовик НАМИ-012, разработанный в начале 1950-х гг. специалистами столичного Научного автомоторного института «НАМИ» и работавший на дровах. (см. «Затея с паромобилями» и «Паровой автомобиль НАМИ-012»)

Паросиловая установка грузовика НАМИ-012 оказалась сложнее автомобильных силовых установок с двигателями внутреннего сгорания (ДВС). Правда, справедливости ради, необходимо отметить малоизвестный факт. На паровой машине НАМИ-012 были проведены экспериментальные исследования в широком диапазоне изменения частоты вращения выходного вала. Удалось установить, что для паровых моторов (высокооборотных паровых машин) с ростом частоты вращения механический КПД монотонно снижается из-за роста механических потерь, но относительный индикаторный КПД увеличивается в большей степени, что объясняется значительным снижением потерь от утечек пара и теплообмена между паром и стенками цилиндров.

А вот гидравлические потери при впуске пара в цилиндр увеличиваются незначительно. После достижения некоторой критической частоты вращения вала наблюдается обратный эффект, когда с ростом частоты вращения гидравлические потери увеличиваются значительнее, чем снижаются потери от утечек пара и теплообмена, что приводит к снижению относительного индикаторного КПД.

Таким образом, при изменении частоты вращения вала у парового мотора его эффективный, относительные индикаторный и эффективный КПД увеличиваются только при условии, что частота вращения не превышает критического значения. Максимальные значения этих КПД достигаются при критической частоте вращения.

Выгодный пар

Паровой автомобильный транспорт, в том числе грузовики и автобусы, сегодня вполне реально рассматривать как один из возможных путей решения проблемы очищения воздуха в городах. Загрязнение атмосферы городов выхлопными газами уже достигло пределов, угрожающих здоровью людей. А что может предложить паровая техника?

Во-первых, выхлоп самой паровой машины экологически чистый – это водяной пар. Под паровым котлом можно сжигать фактически любое углеводородное топливо. А выхлоп от котла будет гораздо чище, чем от ДВС, поскольку топливо сгорает в топке или горелке при значительно более низких давлениях, чем в цилиндрах ДВС. Ещё возможно добавить к горелке некий аналог каталитического нейтрализатора выхлопных газов, как у ДВС.

Во-вторых, котлостроение за 60 с лишним лет, после создания паросиловой установки грузовика НАМИ-012, ушло далеко вперёд. Создание в XXI столетии малогабаритного транспортного парового котла прямоточной конструкции, экономичного и с высокой степенью автоматизации работы – это объективная реальность. Кстати, такая задача была под силу ещё в докомпьютерную эпоху 1930-х гг. известным братьям Добл. Особенно, если разработку сегодня вести с использованием компьютерных систем автоматизированного проектирования (САПР) для трёхмерного моделирования, расчётов и оптимизации.

В-третьих, ДВС нашего времени более компактны, чем ряд автомобильных паровых моторов прошлого, и вполне возможна конверсия их в современные паровые моторы. У них будут все достоинства паровых поршневых машин: плавность хода, практическая бесшумность при работе, большой крутящий момент на валу, отсутствие коробки передач, сложной трансмиссии, стартера, глушителя. Отпадает потребность и в смазочном масле: вполне сгодится вода!

В-четвёртых, опасность размораживания паросиловой установки в зимний период возможно свести на нет за счёт герметичной системы парообразования и применения незамерзающих жидкостей, способных эксплуатироваться длительное время без утечек.

В-пятых, многим специалистам может показаться, что запуск парового грузовика или автобуса будет более продолжительным, чем у обычного транспорта с ДВС. Однако уже к началу 1970-х были отработаны конструкции паровых моторов, способных переходить от холодного состояния до момента трогания с места транспортного средства всего за 30–35 с.

Паровой «Циклон»

Знания из истории паротехники (о неэффективной прямоточной машине Штумпфа), теории термодинамики и теплотехники (к примеру, как снизить потери в паровой машине), проектирование с использованием САПР, современные конструкционные материалы и отмеченные достоинства парового мотора – всё это воплощают в железе зарубежные изобретатели высокотехнологичного паросилового агрегата «Циклон». Мощностной ряд этих силовых агрегатов, в частности, для грузового автомобильного транспорта и автобусов успешно разрабатывается командой специалистов из США.

Автором изобретения «Двигатель с регенерацией тепла» (патент США US 7,080,512) является Гарри Шоэлл (Harry Schoell – англ.). Характерные особенности такого парового мотора из состава силового агрегата «Циклон» состоят в звездообразном расположении цилиндров и работе со смазкой деионизированной водой без смазочного масла.

Тепловой регенеративный поршневой двигатель внешнего сгорания «Циклон» может потреблять фактически любое жидкое или газообразное топливо. Испытывали даже на апельсиновой кожуре! Имея уже необходимую патентную защиту (патент РФ RU 2357091) своего двигателя, как отмечают разработчики, они могут продавать лицензии на «Циклон» и инвестировать партнёров в России. К слову, получено несколько десятков патентов по всему миру, как на агрегат в целом, так и на составляющие его элементы (например, на камеру сгорания парогенератора, компактный конденсатор отработавшего пара).

Силовой агрегат «Циклон» работает при давлении водяного пара на уровне 20 МПа и его температуре порядка 650 ºС. Он устроен и функционирует следующим образом. Вода из бака (условно не показан) подаётся в парогенератор 1, который вырабатывает свежий пар 2А, 2В. В камеру сгорания парогенератора 1 подаётся топливо и воздух 7В. Свежий пар 2А, 2В поступает в клапанный паровой мотор 3 и срабатывает в нём. Отработавший пар 5А, 5В направляется в конденсатор 4. Для лучшей конденсации пара в конструкции конденсатора 4 предусмотрен охлаждающий вентилятор 6, создающий воздушный поток 7А. Конденсат 8А, 8В водяного пара подается обратно в парогенератор 1.

Несколько примеров по части материалов, из которых изготовлен силовой агрегат «Циклон». Так, корпус и основные детали парового мотора сделаны из лёгких сплавов и композиционных материалов: поршни – из алюминия, а недающие им соприкасаться со стенками цилиндров головки и уплотнения – из жаростойкого углеродного волокна.

Подведём итоги

Интерес к паровым грузовикам и автобусам, как и к другому паровому наземному транспорту, сегодня вновь возрождается. Причём если обратиться к истории, то такое происходит уже не в первый раз. Насколько окажется результативным очередной паровой ренессанс на транспорте? Это покажет время.

Паровая машина Ньюкомена — Википедия

Анимационная схема паровой атмосферной машины Ньюкомена 1712 г. Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Паровая машина Ньюкомена — пароатмосферная машина, которая использовалась для откачки воды в шахтах и получила широкое распространение в XVIII веке.

Паровой двигатель (эолипил) турбинного типа был изобретён Героном Александрийским в I веке н. э., но оставался забытой игрушкой, и лишь в конце XVII столетия паровые двигатели вновь привлекли внимание энтузиастов. Дени Папен изобрёл паровой котёл высокого давления с предохранительным клапаном и впервые высказал идею использования подвижного поршня в цилиндре. Но до практической реализации Папен не добрался.

В 1705 году кузнец по профессии Томас Ньюкомен совместно с лудильщиком Дж. Коули построил паровой двигатель для водяного насоса (водоподъёмника), опыты по совершенствованию которого продолжались около десяти лет, пока он не начал исправно работать (1712). При мощности 8 лошадиных сил машина поднимала воду с 80-метровой глубины[1]:184. По-видимому, Ньюкомен использовал ранее полученные экспериментальные данные Папена, который изучал давление водяного пара на поршень в цилиндре и поначалу нагревание и охлаждение пара для возвращения поршня в исходное состояние производил вручную.

Однако на своё изобретение Ньюкомен не смог получить патент, так как паровой водоподъёмник был запатентован ещё в 1698 году Т. Севери, с которым Ньюкомен позднее сотрудничал, поскольку патент Севери получил по акту Парламента право действия до 1733 года. Устройством Ньюкомена был поршневой паровой двигатель с водоподъёмным насосом, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации: вследствие высокого давления пара двигатели иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт, изобретатель назвал его «другом рудокопа»[2][3].

Водоподъёмные насосы Ньюкомена с поршневым паровым двигателем нашли применение в Англии и в других европейских странах для откачивания воды из глубоких затопленных шахт, работы в которых без них производить было бы невозможно. К 1733 г. их было куплено 110, из которых 14 — на экспорт. С некоторыми усовершенствованиями их до 1800 г. произвели 1454 штуки, и они оставались в употреблении до начала XX века[4]. В России первая машина Ньюкомена появилась в 1777 году в Кронштадте для осушения дока. Усовершенствованная машина Уатта не могла вытеснить машину Ньюкомена там, где был в избытке уголь низкого качества. В частности, на угольных разработках в Англии машины Ньюкомена использовались до 1934 года[1]:186.

Рабочий ход в вакуумном двигателе Ньюкомена совершается не высоким давлением пара, а низким давлением вакуума, образующегося после впрыска воды в цилиндр заполненный горячим паром. Низкое давление вакуума увеличивало безопасность двигателя, но сильно уменьшало мощность двигателя.

Под действием собственного веса поршень насоса (прикрепленный к левому плечу коромысла на анимации, на анимации сам поршень не показан) опускается вниз, а поршень паровой части машины (прикреплен к правому плечу коромысла на анимации) поднимается, и пар низкого давления впускается в вертикальный рабочий цилиндр, открытый сверху. Впускающий пар клапан закрывается, и пар охлаждается, конденсируясь. Изначально пар конденсировался в результате внешнего водяного охлаждения цилиндра с паром[1]:184. Затем введено усовершенствование: для ускорения конденсации в цилиндр с паром после закрытия клапана впрыскивалась вода низкой температуры (из ёмкости непосредственно под правым плечом коромысла на анимации), а конденсат сбегал в сборник конденсата. При конденсации пара давление в цилиндре падает, и атмосферное давление с усилием двигает поршень паровой части машины вниз, совершая рабочий ход. При этом поршень насосной части машины поднимается вверх, увлекая за собою воду на более высокий уровень. Далее цикл повторяется[5]. Смазка и уплотнение поршня паровой части осуществляется небольшим количеством воды, налитой на него сверху.

Изначально распределение пара и охлаждающей воды было ручным, затем изобретено автоматическое распределение, т.н. «механизм Поттера».

Работа, производимая атмосферным давлением, тем больше, чем больше ход поршня и сила давления на него. Перепад давлений при этом зависит только от температуры, при которой пар конденсируется, и сила, равная произведению перепада давлений на площадь поршня, увеличивается при увеличении площади поршня, то есть, диаметра цилиндра и, следовательно, объема цилиндра. Совокупно получается, что мощность машины растёт с ростом объёма цилиндра.

Поршень связан цепью с концом большого коромысла, представляющего собой двуплечий рычаг. Насос под нагрузкой связан цепью с противоположным концом коромысла. При рабочем ходе поршня вниз насос выталкивает вверх порцию воды, а затем под собственным весом опускается вниз, а поршень поднимается, заполняя цилиндр паром.

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с вдвое большей глубины[1]:185, чем это было возможно при помощи лошадей. Отопление машин углем, добытым в той же шахте, которую машина обслуживала, оказалось выгодно, несмотря на чудовищную прожорливость установки: примерно 25 кг угля в час на одну лошадиную силу[1]:185. Машина Ньюкомена не была универсальным двигателем и могла работать только как насос. Попытки Ньюкомена использовать возвратно-поступательное движение поршня для вращения гребного колеса на судах оказались неудачными. Однако заслуга Ньюкомена в том, что он одним из первых реализовал идею использования пара для получения механической работы. Его машина стала предшественницей универсального двигателя Дж. Уатта.

Схожую технологию в наше время используют бетононасосы на стройках

Схема паровой машины Ньюкомена с конденсатором Уатта

Рабочий ход поршня только в одну сторону (вниз), и постоянные потери тепла на нагревание остывшего цилиндра ограничивали эффективность машины (КПД менее 1%).

Первым усовершенствованием, введённым Уаттом, был отдельный конденсатор, позволивший держать цилиндр постоянно горячим.

В своём принципиально новом двигателе Уатт отказался от пароатмосферной схемы, создав коромысловую машину двойного действия, в которой рабочими были оба хода поршня. Цепь не могла более служить передаточным звеном к коромыслу во время хода поршня вверх, и возникла потребность в механизме, который передавал бы мощность от поршня к коромыслу в обоих направлениях. Этот механизм также был разработан Уаттом. Мощность увеличилась примерно в пять раз, что дало 75 % экономию в себестоимости угля. Тот факт, что на базе машины Уатта стало возможно преобразование поступательного движения поршня во вращательное, и стал толчком к промышленной революции. Тепловой двигатель теперь мог крутить колесо мельницы или фабричного станка, освободив производство от водяных колёс на реках. Уже к 1800 г. фирма Уатта и его компаньона Болтона произвела 496 таких механизмов, из которых только 164 использовались как насосы. Ещё 308 нашли применение на мельницах и фабриках, а 24 обслуживали доменные печи.

  1. 1 2 3 4 5 Техника в ее историческом развитии. От появления ручных орудий труда до становления техники машинно-фабричного производства / Академия наук СССР. Институт истории естествознания и техники. Отв. ред. Шухардин С. В., Ламан Н. К., Федоров А. С. — М.: Наука, 1979. — 3150 экз.
  2. ↑ Hulse, David H: The Early Development of the Steam Engine; TEE Publishing, Leamington Spa, U.K., 1999 ISBN 1-85761-107-1
  3. ↑ L.T.C. Rolt and J. S. Allen, The Steam engine of Thomas Newcomen (Landmark, Ashbourne, 1997), 44.
  4. ↑ Rolt and Allen, 145
  5. Кириллин В. А. Страницы истории науки и техники. — 2-е изд. — М.: Наука, 1989. — С. 196—197. — (Наука. Мировоззрение. Жизнь). — 8200 экз. — ISBN 5-02-006550-1. В этом источнике описывается и проиллюстрирована работа как паровой части машины Ньюкомена, так и её насосной части.

Повышение КПД двигательных установок способом рекуперации сбросного тепла от их работы с помощью парового двигателя Емелина

Повышение КПД двигательных установок способом рекуперации сбросного тепла от их работы с помощью парового двигателя Емелина, на примере паротурбинной и дизельной силовой установки.

В статье описан принцип действия и конструкция парового двигателя Емелина. Описано применение устройства с целью повышения КПД двух таких распространённых типов двигателей как паровая турбина и дизельный двигатель. Рассказано об аспектах работы паровой турбины, ограничивающих её КПД.

Известно, что все существующие в настоящее время типы двигателей прошли большой путь развития и достигли высокой степени совершенства. КПД современного дизельного двигателя 40-45%, бензинового двигателя около 30%, КПД современных паротурбинных силовых установок достигает 40–42 %. В попытках повысить КПД инженеры борются сейчас уже не за проценты, а за доли процентов. Одним из способов значительно повысить КПД, является рекуперация тепла, вырабатываемого двигателям, получение за счёт этого дополнительной механической энергии и снижения за счёт этого расхода топлива. Например, у дизельного двигателя около 60 процентов тепловой энергии теряются в виде тепла, причем примерно половина из них это теплота выхлопных газов, а остальное — теплота, поглощённая в системе охлаждения двигателя.

Почему именно это устройство?

Двигатель Емелина способен использовать для своей работы пар низкого давления, с высокой степенью влажности. Это уникальное свойство, присущее только этому типу парового двигателя, позволяет эффективно использовать бросовую теплоту, остающуюся после работы технических устройств и рекуперировать её в полезную механическую энергию на валу. В том числе способен использовать теплоту, остающуюся после работы паровой турбины и двигателя внутреннего сгорания. Изобретение защищено заявкой в Роспатент №  2013129116 от 25 июня 2013г. Полное название: «Способ преобразования тепловой энергии в механическую с помощью двигателя внешнего сгорания и двигатель Емелина»

А будет-ли это работать?

Увидев чертежи этого двигателя, многие воскликнут: «Что-же тут нового! Этот механизм давно известен и широко используется в технике!» Это и к лучшему. Меньше сомнений в работоспособности предложенного технического решения. Основу конструкции двигателя составляет ротационно-лопастной механизм. Известны: пневматический двигатель, газовый компрессор, гидравлический мотор и гидравлический насос ротационно-лопастной конструкции. Теперь появился и ротационно-лопастной паровой двигатель, он же двигатель Емелина.

Рассмотрим аспекты работы паровой турбины.

Скорость потока пара внутри турбины превышает скорость звука. Большая скорость необходима для получения большой мощности. Пока пар сухой, горячий, турбина работает отлично. Но пар, совершая механическую работу, теряет температуру и набирает влажность. Внутри потока пара появляются мелкие капли жидкой воды и начинают увеличиваться в размерах.

Известно, что капля воды диаметром 2 мм, движущаяся со скоростью 750 м/с, вызывает разрушение алмаза, карбида вольфрама и деформацию высокопрочных сплавов. При меньших скоростях – порядка 200-600 м/с, многократные удары вызывают эрозию материала. Появляются и растут усталостные микротрещины внутри поверхностного слоя материала лопаток турбины. Затем начинается выкрашивание частиц металла. Это явление называется каплеударной эрозией. Появляется дисбаланс, вибрации, и как результат- поломки лопаток. 

Как это выглядит, видно на фотографиях с комментариями, с сайта научно-технического журнала «Надежность и безопасность энергетики», адрес в интернете http://www.sigma08.ru/jur1-11.htm

  

Рис. 1а и 1б. Эрозия входных кромок рабочих лопаток ротора низкого давления турбин Т-250/300-240. Наиболее часто возникающий дефект этих лопаток – эрозионный износ входных кромок. Рабочие лопатки последних ступеней изготавливаются из стали 15Х11МФ и связываются тремя рядами демпферных связей из двух разных материалов – титанового сплава ВТ-5 (наружная связь) и стали 20Х13 (внутренние связи).

Можно подать на вход турбины пар такого высокого давления и температуры, что на выходе турбины пар будет иметь низкую влажность. Лопатки турбины будут работать неограниченно долго. Но из-за плохого использования теплоты конденсации упадёт общий КПД процесса. Остаточная теплоемкость пара будет очень велика.

Можно наоборот, подать на вход турбины пар относительно небольшого давления. Влажность пара на выходе турбины будет высокая. Благодаря хорошему использованию теплоты конденсации общий КПД процесса будет высокий. Но из-за каплеударной эрозии лопаток ресурс турбины будет низким.

Вывод: У паровой турбины КПД находится в противоречие с ресурсом. Чем выше КПД, тем ниже ресурс и наоборот.

На практике применяют компромиссный вариант. Выбирают такой режим работы, при котором влажность пара на выходе из турбины составляет 13-14%. Ресурс турбины при этом составляет несколько лет. Хотя конечный итог всегда одинаковый-капитальный ремонт с заменой лопаток. Для защиты от повреждений, наносимых каплеударной эрозией, применяют высокопрочные высоколегированные стали и сплавы, специальные виды термообработки, многослойные покрытия и т.д. В результате характеристики улучшаются, но гораздо скромнее, чем хотелось бы. Проблема капле-ударной эрозии стоит как непреодолимая преграда на пути повышения КПД паровых турбин.

Но ведь если проблема не решается «в лоб», можно найти обходное решение. Например, можно пар, достигший критической для турбины степени влажности, дорабатывать на паровой машине, работающей по другому принципу, которая способна использовать влажный пар низкого давления без ущерба для своей работоспособности. Именно таким является паровой двигатель Емелина.

О том, какой КПД будет иметь связка паровая турбина плюс паровой двигатель Емелина, сейчас можно только гадать. Можно надеяться, что к 40% КПД паровой турбины двигатель Емелина добавит 15-20%, по скромным прикидкам. Остаточная теплоемкость пара, после работы в двух паровых машинах, будет относительно небольшой и может быть рассеяна в радиаторе, охлаждаемом набегающим потоком воздуха, аналогично радиатору системы охлаждения автомобиля или тепловоза. Пар будет конденсироваться в воду и снова подаваться в паровой котёл. Таким образом, будет обеспечен полностью замкнутый оборот воды. Важным следствием будет являться то, что паровая силовая установка станет независимой от источников воды, по настоящему мобильной.

Повышение КПД двигателя автомобиля

Одним из способов значительно повысить КПД автомобильного двигателя внутреннего сгорания, является рекуперация тепла, вырабатываемого двигателем и снижения за счёт этого расхода топлива. Попытки решения этой задачи предпринимались неоднократно. Последнюю по времени такую попытку предприняли разработчики баварского концерна BMW. Проект называется Turbosteamer. Система Turbosteamer состоит из двух ключевых узлов. Первый - двухступенчатый теплообменник, в котором выхлопные газы нагревают рабочую жидкость, превращающуюся в результате в пар высокого давления с температурой несколько сотен градусов. Второй главный узел — паровая турбина, куда перегретый пар поступает по магистрали, расширяется и выполняет полезную работу, помогая вращаться коленчатому валу основного мотора. После прохождения через турбину пар преобразуется обратно в жидкость в теплообменнике-конденсаторе, прежде чем попасть обратно в резервуар жидкости.

Остаточная теплота пара через теплообменник передается жидкости системы охлаждения двигателя и рассеивается в атмосфере с помощью радиатора. Экономичность двигателя возрастает на 10%-15%. Естественно, радиатор системы охлаждения должен иметь увеличенные размеры.

То, что прирост эффективности составляет всего 10%-15%, объясняется просто. Малогабаритная турбина имеет те-же недостатки, что и большая, Не способна использовать пар с влажностью выше 13-14% и потому КПД процесса не более 40%.

Усовершенствовать такую систему рекуперации тепла можно, заменив паровую турбину паровым двигателем Емелина. Причём в данном случае он может применяться самостоятельно, а не в связке с турбиной.

Такое техническое решение имеет следующие преимущества:

  • Генератор пара будет настроен на выработку пара низкого давления. Пар низкого давления безопаснее, чем пар высокого давления, требуемый для работы паровой турбины.
  • Меньше остаточная теплоёмкость отработавшего пара, требуется радиатор охлаждения меньшего размера
  • Меньше вес, не требуются толстые стенки, способные выдерживать большое давление

Для работы в составе автомобильной двигательной установки двигатель Емелина имеет полезные опции. Предусмотрена возможность предварительного прогрева перед пуском после нахождения в условиях отрицательных температур. Предусмотрен режим запуска двигателя с обеспечением максимального вращающего момента, начиная с нулевой скорости вращения.

 

Устройство двигателя Емелина

Двигатель состоит из статора 1, ротора 2, имеющего вал. На валу ротора установлен шкив (или звездочка или шестерня или полумуфта, в зависимости от типа передачи), закрепленный при помощи гайки. К торцам статора 1 с обеих сторон прикреплены при помощи болтов передняя и задняя крышки, соответственно 3 и 4.  В пазах ротора 2 свободно установлены лопатки 5. Ротор 2 расположен эксцентрично относительно внутренней цилиндрической поверхности статора 1. Лопатки 5 могут свободно перемещаться в пазах ротора 2 в радиальном направлении.  Вал ротора 2 установлен в двух подшипниковых узлах. В передней крышке 3 находится передний подшипниковый узел. В задней крышке 4 находится задний подшипниковый узел. В передней и задней крышках 3 и 4 установлены уплотнения.

Изюминкой конструкции парового двигателя является то, что все поверхности внутри двигателя, контактирующие с паром, покрыты фторопластом, выполняющим 3 важные функции.

1. Удаление конденсата пара из двигателя происходит под воздействием центробежной силы. Водоотталкивающие свойства фторопластового покрытия не позволяет воде задерживаться на поверхностях деталей двигателя даже в виде тонкой плёнки. Свежий пар, попадая в двигатель, не тратит никакой части своей энергии на испарение остатков воды.

2. Фторопластовое покрытие снижает трение между деталями двигателя. Фторопласт называют «Скользким чемпионом» за низкий коэффициент трения.

3. Покрытие резко снижает вредный теплообмен между паром и поверхностями деталей двигателя, поскольку теплопроводность фторопласта в 180 раз меньше, чем у стали.

Статор двигателя, состоит из гильзы, расположенной в центре, к которой с обоих торцов присоединены два фланца. На гильзе имеются: Впускные отверстия, тангенциально расположены относительно внутреннего диаметра гильзы. Для размещения впускных отверстий, на наружной поверхности гильзы имеется прилив материала. Выпускные отверстия, группа, для выброса отработавшего пара и конденсата. Расположены в шахматном порядке в пределах сектора выпуска. Внутренний диаметр гильзы покрыт фторопластом.

 

Ротор двигателя имеет пустотелую сборную  сварную конструкцию. Все поверхности ротора, кроме концов вала, имеют фторопластовое покрытие. Перед сваркой на все поверхности деталей, предназначенные под нанесение покрытия, наносят искусственную шероховатость (насечки).

Сборка ротора выполняется поочередной приваркой к валу отдельных сегментов. Сначала приваривают боковые стенки 7 сварным швом изнутри сегмента, потом к ним  шпангоуты 8 сварными швами изнутри сегмента. Потом приваривают крышку 9 наружным сварным швом. После проведения сварки наружные сварные швы зачищают. Ширина пазов между сегментами после сварки больше, чем у готового ротора, за счёт толщины покрытия на стенках. Для снятия остаточных напряжений после сварки  выполняют отжиг по технологии, обычной для сварных корпусов.

Наносят фторопластовое покрытие толщиной в несколько миллиметров, с припуском на механическую обработку. Пазы заполняют полностью материалом покрытия. При последующей механической обработке пазы вновь прорезают дисковой фрезой с использованием делительной головки. Обработку паза производят в два приема, черновое и чистовое прорезание фрезой.

Подшипниковые узлы двигателя могут иметь различные варианты конструкции, в зависимости от типов используемых подшипников. На чертеже, показан вариант конструкции с использованием в подшипниковых узлах  шариковых радиальных однорядных подшипников с защитными шайбами.

С целью недопущения перегрева подшипников, подшипниковые узлы отодвинуты от центральной, нагреваемой паром, части двигателя. Находятся в удлиненных пустотелых бобышках, снабжённых вентиляционными окнами.

Лопатки изготавливаются из листового материала, например стеклотекстолита. Покрыты со всех сторон слоем фторопласта.

 

Подготовка к работе двигателя после хранения в условиях отрицательных температур.

С целью прогрева замёрзшего двигателя, без вращения вала, в дополнительное отверстие для пара в одной из крышек 3 или 4, подают пар. Через другое отверстие пар выпускают. Пар, проходя через пазы ротора 2 под лопатками 5, вдоль оси вращения двигателя, нагревает двигатель изнутри.

 

Пуск двигателя

С целью обеспечения полного вращающего момента на валу, начиная с нулевой скорости вращения, в конструкции двигателя применено принудительное поджатие лопаток 5 к статору 1 в момент пуска.

Для этого перед пуском двигателя подают пар в дополнительное отверстие для  пара в одной из крышек 3 или 4. Дополнительное отверстие в другой крышке при этом заглушают.

Давление пара, попавшего в пазы ротора 2 под лопатки 5, раздвигает лопатки 5 и прижимает их к внутренней поверхности гильзы статора 1.

После этого подают пар во впускные отверстия в статоре 1, двигатель запускается, набирает рабочие обороты. После этого прекращают подачу пара в дополнительное отверстие в крышке. На рабочих оборотах поджатие лопаток 5 к статору 1 обеспечивается центробежными силами.

 

Работа двигателя

Пар низкого давления, поступая в двигатель через впускные отверстия, давит на выступающие части лопаток 5 и заставляет ротор 2 вращаться. Лопатки 5 при вращении прижимаются центробежной силой к внутренней поверхности статора 1, препятствуя перемещению пара из одной камеры в другую. Резко расширившись и совершив механическую работу, пар охлаждается и в нём начинается интенсивный процесс конденсации. Отработавший пар и конденсат, под действием центробежной силы, через выпускные отверстия в статоре 1, выбрасывается из двигателя. Свежий пар, поступающий в двигатель при следующем такте, встречает сухие стенки рабочих камер и не тратит энергию на испарение оставшейся жидкой воды.

 

Подробнее о принципе действия.

В отличии от паровой турбины, в которой для получения механической энергии на валу используют кинетическую энергию потока пара, в паровом двигателе Емелина для получения механической энергии на валу используют потенциальную энергию давления пара. Таким образом, по принципу действия двигатель Емелина ближе к поршневой паровой машине. Циклы работы этих двух двигателей включает одинаковые фазы:

  • фаза впуска пара, завершающаяся отсечкой заполнения
  • фаза расширения пара, совершающего механическую работу
  • фаза выпуска отработавшего пара
  • фаза сжатия оставшегося отработавшего пара
  • циклическое повторение указанных процессов

 

Собственно, конструкция двигателя Емелина появилась в результате попыток улучшить конструкцию поршневой паровой машины, устранив её недостатки. Основным недостатком поршневой паровой машины является плохое использование теплоты конденсации пара. Как известно, теплоёмкость пара состоит из двух составляющих-теплоты конденсации (парообразования) и  теплоты перегрева пара. Теплоту перегрева пара поршневая паровая машина использует отлично. Если говорить в кулинарных терминах, то для паровой машины теплота перегрева пара является полезной легкоусвояемой пищей, а теплота парообразования (конденсации) - пища тяжёлая, плохо перевариваемая. Проблема в том, что из-за особенностей физических свойств воды, теплота парообразования (конденсации) водяного пара, как правило, значительно больше теплоты перегрева пара.

Логически рассуждая, при хорошем использовании теплоты конденсации значительная часть пара будет переходить в жидкое состояние прямо внутри двигателя, в течении фазы расширения пара, совершающего механическую работу. В фазе выпуска отработавшего пара конденсат должен полностью удаляться из поршневой полости. Но выпуск из поршневой паровой машины возможен только в виде пара. Выпуск жидкости не предусмотрен конструкцией.

У поршневой паровой машины есть и другие недостатки, которые были хорошо изучены ещё во времена её широкого использования, в том числе на железнодорожном транспорте. Ниже приведена цитата из книги «Курс паровозов. Устройство и работа паровозов и техника их ремонта: 2 тома, под редакцией профессора Сергея Петровича Сыромятникова. Государственное транспортное железнодорожное издательство. Москва. 1937год. – 524 с.», том 2, стр. 31:

«Основным источником тепловых потерь, возникающих в паровом цилиндре, на почве теплообмена между паром и стенками цилиндра, является то обстоятельство, что впуск свежего и выпуск мятого пара происходит через одни и те же каналы и окна.

Порция свежего пара, попадая в цилиндр, встречает там металлические поверхности стенок, только что перед этим охлажденные током уходящего в конус отработанного пара. Вследствие этого в период впуска пара происходит интенсивное отнятие от него тепла, вызывающее в случае насыщенного пара частичную его конденсацию, а при работе перегретым паром — контракцию, т.е. снижение температуры, сопровождающееся уменьшением удельного объёма пара. И в том и в другом случае для осуществления в цилиндре заданной индикаторной работы приходится впускать в него большее количество пара, чем его требуется по теоретическому расчёту для заполнения объёма отсечки.

Отдача тепла холодным стенкам продолжается в течении всего периода впуска и на части периода расширения, пока быстро падающая при расширении температура пара не сделается ниже температуры стенок.

Начиная с этого момента, теплообмен меняет своё направление, - происходит обратная отдача тепла пару, особенно интенсивная в период предварения выпуска. К сожалению, эта запоздалая компенсация приносит мало пользы, так как в конце периода расширения тепло отдаётся пару при давлении его в цилиндре, гораздо более низком, чем в период получения тепла стенками; возвращаемое же пару тепло в период выпуска не приносит никакой пользы, так как целиком уносится в конус».   Конец цитаты.  

Недостатки поршневой паровой машины

Как это решено в двигателе Емелина

Вредный теплообмен между рабочим телом (пар) и металлическими поверхностями в поршневой полости цилиндра.

Покрытие резко снижает вредный теплообмен между паром и поверхностями деталей двигателя, поскольку теплопроводность фторопласта примерно в 180 раз ниже, чем у стали.

Впускают свежий и выпускают отработавший пар через одни и те же каналы и окна.

Впуск и выпуск происходит через раздельные отверстия и каналы

Отработавший мятый пар выпускают только в виде пара. Даже та часть пара, которая успела перейти в жидкое состояние, повторно испаряется за счёт тепла окружающей цилиндр паровой рубашки, и вместе с теплотой конденсации «целиком уносится в конус».

Удаление конденсата пара из двигателя происходит под воздействием центробежной силы. Водоотталкивающие свойства фторопластового покрытия не позволяет воде задерживаться на поверхностях деталей двигателя даже в виде тонкой плёнки. Свежий пар, попадая в двигатель, не тратит никакой части своей энергии на испарение остатков воды.

Какой величины КПД можно достичь?

Чтобы достигнуть максимального КПД, требуется максимально использовать теплоту конденсации пара, что соответствует максимально возможной конденсации пара в жидкость. Как добиться конденсации пара? Тут всё просто: пар, совершая механическую работу и одновременно расширяясь, охлаждается и конденсируется. Всё дело только в коэффициенте расширения. То-есть, во сколько раз увеличился первоначальный объём пара. Для пара низкого давления — один коэффициент расширения, для перегретого пара высокого давления потребуется гораздо больший коэффициент расширения.

Конечный результат одинаков. Пар превратится в воду. Почти весь. Небольшая часть останется в виде насыщенного пара. Если есть жидкая вода, есть и пар над её поверхностью, независимо от температуры. Даже над поверхностью снега и льда всегда есть небольшое количество водяного пара. КПД равный 100% невозможен, потому что весь пар не может перейти в жидкость. Да и для перехода всего пара в жидкость, возможно, потребуется коэффициент расширения, равный бесконечности. У любого парового двигателя коэффициент расширения пара - величина конечная и не очень большая. Практически увеличить степень расширения можно, использовав многоступенчатое расширение пара, подобно тому, как это сделано в поршневых паровых тандем-машинах. Чем больше степень расширения, тем выше КПД. Насколько близко удастся приблизиться к недостижимой отметке 100%, зависит от конструктивных ограничений. Использование больших коэффициентов расширения требует увеличенных габаритов и веса оборудования. Другими словами, чем больше габариты, тем выше КПД. Насколько большого КПД удастся достичь, покажет только время. В любом случае, паровой двигатель низкого давления должен иметь большие габариты, обусловленные большим объёмом и низкой плотностью пара.

Одно из достоинств двигателя Емелина то, что основные элементы конструкции двигателя пустотелые и тонкостенные. Это позволяет при росте габаритов сохранить вес оборудования в разумных пределах.

Тут кстати стоит вспомнить о винтовых паровых машинах, они также допускают использование влажного пара. Но их рабочие органы представляют из себя винтовые валы, выполненные из монолитной стали. При увеличении габаритов винтовых валов будет резкое нарастание веса. Это ограничивает их использование в области пара низкого давления.

 

Заявка на изобретение №  2013129116 от 25 июня 2013г.

«Способ преобразования тепловой энергии в механическую с помощью двигателя внешнего сгорания и Двигатель Емелина».

Автор: Емелин Сергей Александрович.

E-mail: [email protected]

Идея устройства создана с использованием ТРИЗ. Ход выработки технического решения освещен на сайте ТРИЗ по адресу  http://www.metodolog.ru/node/896

Статья об использовании двигателя Емелина в энергетике «Деньги на ветер или как решить проблему современной энергетики» по адресу: http://izobretatel.by/

 

 

Принципы работы парового двигателя (стр. 5 из 5)

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.

1.4.2 Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен


,

где

Wout— механическая работа, Дж;

Qin— затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 - 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 - 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т.н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100°С.

В практической части была сделана попытка сконструировать механизм, способный двигаться на пару.

Для работы мы использовали различные материалы, которые можно купить в хозяйственном магазине.

Механизм состоял из различных подручных средств.

Были использованы такие материалы как:

железная платформа размером,

банка из-под освежителя воздуха,

различные металлические крепежи,

металлический винт,

различного диаметра трубочки,

различные держатели,

металлическая проволока,

свеча,

сухой спирт.

В первую очередь чтобы собрать механизм мы приготовили основание, на чем будет стоять наш механизм выбор пал металлическую платформу размерами (11*23)см.

Металлическая платформа по своим качествам и свойствам: прочная, способная выдержать длительные нагрузки и приличный вес механизма, а так же, способна выдержать длительный жар и не деформироваться под его воздействием.

Потом мы подготовили емкость, в которую будет наливаться вода и в дальнейшем нагреваться. Для емкости мы использовали банку из под освежителя воздуха размерами в высоту 12см и в 7см в диаметре.

Так как нам продеться её нагревать, наружный металлический корпус идеально подходил для этого. А так же плюсы этой емкости были в том, что она была практически герметична. Подача воздуха и выход пара происходил через одно отверстие. Была приделана металлическая узкая трубочка на выходе из емкости, чтобы увеличить давление в ней при нагревании и создать как можно больший поток пара на выходе из емкости.

Для того чтобы установить емкость на металлической платформе были использованы металлические крепежи.

Металлические крепежи были сделаны специально из толстого металла, для того чтобы они были способны выдержать вес емкости с водой, а так же стойкими к огню.

Так как при нагревании емкости выходящий из неё пар сконцентрирован в одном месте и создает горячий поток воздуха. Именно эту особенность мы решили использовать и по закону сохранения энергии, что энергия может переходить из одной формы в другую.

И возникла идея превратить пар в механическую энергию.

Чтобы это сделать, был использован металлический винт.

Поток пара направленный на лопасть винта заставил бы его крутиться винт вокруг своей оси, что наглядно показывало на переход энергии в механическую.

Ось винта с одной стороны должна быть с удлинением 2-3 см. Поскольку на неё будет крепиться резинка, соединяющая ее с колесом механизма. И за счет того, что винт будет крутиться под напором пара, то через резинку это движение будет переходить на колесо. Что в конечно итоге должно заставить медленно двигаться механизм.

Одно из важнейших особенностей этого механизма это нагревание воды в емкости. Были использованы 2 вида источника тепла: первый это обычная свечка, которая даем не достаточно теплоты, чтобы заставить воду кипеть и сухой спирт, который значительно больше дает теплоты, но тоже не способная быстро выпаривать воду.

2.2 Способы улучшения машины и ее КПД

В предыдущем прототипе мы при благоприятных условиях могли бы получить от 1-3% КПД, но при данном улучшении КПД должен увеличиться до 3-6%.Идея очень простая и работает за счет давления пара образованного в емкости.

Улучшения заключается в том, что изменяется положение емкости и способ перехода энергии. На емкости в том месте, где выходит пар, приделана трубочка внутри которой находиться металлический шарик, который закрывает емкость. Шарик подпирает пружинка, которая соединяет шарик и поршень. В самой трубочке образованны отверстия, чтобы пару было куда уйти. И принцип заключается в том, что в емкости при нагревании образуется пар и в момент увеличения давления, когда давление увеличивается до определенного момента, давление вытесняет шарик. Вытесненный шарик по цепной реакции задействует пружинку, а она в свою очередь переходит на поршень и так через рычаги механическая энергия переходит на колеса. И так продолжается пока в емкости может образоваться давление для вытеснения шарика. Таким образом, если урегулировать механизм мы можем, получит частое поднятие шарика, а это приведет к созданию скорости.

2.3Анкетирование

Результаты анкетирования показали, что из 20 учеников 2 классов на 10 вопросов правильно ответили 65% учеников.

На самые актуальные вопросы сделана таблица на рис.(20.) для наглядного сравнения.

Заданные вопросы:

1.Как вы думаете, какой будет КПД у этой машины и почему? на рисунке (21.)

2. В каких промышленных предприятиях используют паровой двигатель?

3. В каком году французский изобретатель Кюньо построил первый в мире паровой автомобиль?

4. Кто такой англичанин Томас Севери?

5. Какую максимальную скорость развивал паровой автомобиль?

Заключение

После написания работы были сделаны выводы, что паровая техника до сих пор окружает нас и используется и по сей день: паровозы сравнимы с современными дизельными и электрическими локомотивами, насосные станциями и множество других мест.Проанализировав научную литературу, стало очевидно, что именно паровой двигатель изменил наш мир, и наши жизни, поскольку именно с его открытия настала эра развития технологий и разного вида транспорта.

Изучив принцип работы паровых двигателей, сконструировали и построили простейший механизм, работавший на пару. Рассмотрели возможности увеличения КПД в дальнейшем.

В работе при создании механизма мы столкнулись с рядом проблем, которые помешали добиться желаемого результата и что, в конечном счете, привело к малой мощности нашего механизма. Что частично опровергает нашу гипотезу. Чрезмерное влияние внешних факторов и большая потеря тепла, энергии впустую, были причинами неудачи. Так же не достаточное быстрое и малое количество образования пара привело к тому, что не создавалось нужное давление и что в последствии привело нехватке мощности.

При конструировании механизма следующего поколения большинство факторов было учтено, чтобы избежать прежней участи. Чертежи были основанные, для того чтобы улучшить механизм и добиться желаемого результата.

По этой работе можно судить, что в мире паровых технологий и по сей день, есть куда стремиться и развиваться. И может именно эта технология станет самой экономичной, экологической и мощной в дальнейшем в мире.

Список используемой литературы

Статья основана на материалах Большой советской энциклопедии 2-го издания.eo:Vapormaŝinohu:Gőzgéplt:Garo mašinann:Dampmaskin

Паровые машины. Теория и практика.

«Паровые машины.Теория и практика.»1922 год 6 издание.

Содержание:

К написанию заметки подвигло желание дать в руки альтернативщикам простой и понятный инструмент расчета девайса. Заодно и вспомнить основные принципы работы паровых машин.

Основные принципы паровой машины , надеюсь понятны. Кому не понятны -причитают в книге

http://openlibrary.org/books/OL23340867M/Steam-engine_theory_and_practice

или википедии. Одноцилиндровые машины достаточно примитивны и хорошо потому описаны. Котел-золотник-цилиндр — атмосфера. Просто и понятно.

Разводить водой не будем — сразу переходим к интересующиму нас вопросу.

Морские паровые машины

(В первой редакции простые ПМ не рассматривал.До первого коммента ( погибшего).Действительно — никто не мешает сделать тотж «Новик» аж на 4х винтах , влепив 4 компаунда. Но одноцилиндровая — все таки на мой взгляд перебор)
Выбрасывать воду в виде пара на море- довольно расточительно. Корабль- не мельница на речке- пресной воды нет (те конечно есть — но её достаточно мало). Можно, конечно, питать котлы заборной водой, но сразу встает вопрос засоления трубок котлов. И придумали оригиальну вещь . Пар из первого цилиндра ( раширившись и совершив какую-то работу) идет во второй цилиндр и делает уже работу там . Опять расширившись он не выбрасывается в атмосферу а идет в холодильник , где конденсируется до состояния воды и идет обратно в котел. Так появились машины двойного расширения. Добавив третий цилиндр- получили машины тройного расширения.
Потом подобный девайс еще усовершенствовали- разделили цилиндр низкого давления на два .

Эту схему,применяли гтам, де один цилиндр низкого давления становился слишком большим при литье. Это также удобно для более действенной балансировки двигателя.

вернуться к меню ↑

Холодильник

вернуться к меню ↑

Машина одинарного расширения

Применялись при давлении пара 35 фунтов/дюйм2 ( 2,5 атм)

вернуться к меню ↑

Машины двойного расширения ( компаунд)

применялись при давлении пара 60-100 фунтов/дюйм2 ( 4-7 атм)

(схема на первом рис довольно оригинальна)

вернуться к меню ↑

Машины тройного расширения

применялись при давлении пара 120-170 фунтов/дюйм2 и больше ( 4-7 атм)

3 цилиндра

 

4 цилиндра

6 цилиндров

вернуться к меню ↑

Расчет скорости корабля в зависимости от мощности.( Формулы интересны скорее заклепочникам )


V-скорость в узлах, D-водоизмещение, Н- мощность и.л.с, С-константа ( да.1/3 заменять на 0,33 и 2/3 заменять на 0,66 не рекомендую.Погрешность в полузла вылазит)

ТЕ приведены три константы

Для больших и быстрых (пассажирских)пароходов — 250

Для грузовых пароходов — 235

Для крейсеров и броненосцев- 225

Я лично для малых крейсеров в 2800-3300 т предлагаю — 200

Такто эта константа пишется и обозначается как «коэффициент Адмиралтейства» или «Адмиралтейский коэффициент».И таблицы есть. Но врядли ктото из присутствующих станет конструировать яхту.

( ктото не согласен или хочет внести свои коэффициенты ( миноносцев вот нет пока) — пожалста, только аргуметируйте расчетом- поменяем)

Те вполне можно посчитаь нужную мощность ПМ в табличном редакторе и построить очень красивые графики.

вернуться к меню ↑

Расчет мощности ПМ ( в дюймовой системе).

Имеется общая английская формула для расчета мощности в индикаторных лошадиных силах.( в милиметры пока не перевел — диаметры английских и американских машин в дюймах довольно часто встречаются )
Мутным моментом при расчерте яваляется среднее давление пара в цилиндре . Но если альтернативщик берет за основу какую-то уже рабочую машину- можно посчитать ее даление и уже на основе этой цифры играться с размерами цилиндров, чтоб поднять мощность.

 

Паровые автомобили | Журнал Популярная Механика

В 1769 году на улицах Парижа появилась причудливая самодвижущаяся повозка, которой управлял ее создатель — артиллерийский инженер Николай Жозеф Кюньо. Сердцем конструкции была паровая машина, работающая по принципу медицинской банки — медный цилиндр наполняли паром, после чего впрыскивали воду, и возникавший вакуум втягивал поршень.

Несмотря на архаичность конструкции, повозка развила приличную скорость, о чем свидетельствует конец первого в истории заезда: водитель не справился с управлением и врезался в стенку. Спустя сто лет паровые автомобили вовсю носились по городским улицам, развивая приличные даже по сегодняшним меркам скорости.

Первый паровой автомобиль Кюньо

В январе 1906 года Фред Мариотт на паровичке с удивительно скромным названием «Ракета», построенном компанией «Братья Стенлей», впервые в мире преодолел 200-километровую отметку, развив скорость в 205,4 км/ч. «Ракета» обгоняла не только любой автомобиль того времени, но и даже самолет. В следующем году прославленный гонщик разбился — опять же на паровом автомобиле. Как показало расследование, на скорости 240 км/ч. Напомним, шел 1907 год. К началу XX века по дорогам колесили уже десятки тысяч паровых автомобилей, в основном грузовиков. От бензиновых собратьев они отличались чрезвычайной долговечностью и надежностью и могли работать на всем, что горит, — угле, дровах, соломе. У этих машин была небольшая скорость (до 50 км/ч), они брали на борт сотни литров воды и выпускали пар в атмосферу.

В Европе паровые автомобили продержались до начала Второй мировой войны и еще в 50-е годы серийно выпускались в Бразилии. Однако были у замечательных машин и серьезные недостатки: после твердого топлива остается много золы и шлака, в его дымесодержится копоть и сера, что абсолютно неприемлемо для городских улиц. Но даже не копоть поставила крест на таких автомобилях. Дело в том, что растопка котла на твердом топливе длилась около двух часов. Поэтому их старались не гасить вовсе — на ночь котел подключали к зданию, нуждавшемуся в тепле, а утром через 10−15 минут автомобиль был готов отправиться в путь. Аналогично использовались железнодорожные паровозы — для отопления небольших поселков.

Автомобиль на спирте

Альтернативой стал паровой автомобиль на жидком топливе: бензине, керосине и спирте. Казалось бы, зачем применять паровой котел, если жидкое топливо прекрасно горит и в двигателе внутреннего сгорания (ДВС)?

Но инженеры того времени рассуждали иначе. Многим из них казалось, что ДВС для транспорта не пригоден: его нельзя запустить, не размыкая трансмиссию, достаточно его притормозить, и он глохнет. ДВС не развивает достаточную тягу во всем диапазоне скоростей, и его приходится дополнять коробкой передач. А теперь посмотрите на паровую машину. Она обладает способностью автоматически приспосабливаться к дорожным условиям. Если сопротивление движению возрастает, она замедляет вращение и увеличивает крутящий момент. Если же сопротивление движению уменьшается, она вращается все быстрее и быстрее.

Вспомним паровоз. Поршень его паровой машины соединялся шатуном непосредственно с колесами. Сцепления и коробки передач не было и в помине. Простой подачей пара в цилиндр паровозы трогали с места тысячетонные составы, постепенно увеличивая их скорость, иной раз километров под двести. И все это делал без каких-либо промежуточных элементов простейший (если сравнивать с ДВС) двигатель.

Поэтому инженеры предпочитали изготовить легкий компактный парогенератор и обойтись лишь одной только паровой машиной, не прибегая к коробке передач и сцеплению.

1887 год, Франция. Гонки паровых автомобилей

Первые паровые автомобили на жидком топливе начинали движение уже через 23 минуты. Они выпускали пар в атмосферу, и им требовалось около 30 л бензина и более 70 л воды на 100 км пути. Именно такой двигатель стоял на чемпионской «Ракете».

Автомобиль для миллионеров

В 1935 году на Московском автозаводе им. Сталина (ныне ЗИЛ) появился легковой автомобиль высшего класса с кузовом из красного дерева на шасси «Паккард» из хромоникелевой стали. Этот автомобиль, сделанный американской фирмой «Беслер» по лицензии компании «Добль» в 1924 году, был паровым. Под его капотом размещались парогенератор и два (один за другим) радиатора. На заднем мосту стояла небольшая паровая машина, выполненная в едином блоке с дифференциалом. Сцепления, коробки передач и карданного вала на автомобиле не было. Управление двигателем осуществлялось педалью подачи пара. Изредка приходилось изменять отсечку — фазу прекращения впуска пара в цилиндр. Обычный поворот ключа зажигания — и через 45 секунд автомобиль трогается с места. Еще пара минут — и он готов начать разгон до скорости 150 км/ч с ускорением 2,7 м/с2.

Езда на паровом автомобиле — одно удовольствие. Он движется бесшумно и плавно. Тот самый «Добль-Беслер» продолжали испытывать и после войны. Вот что рассказывал инженер-испытатель автомобиля А.Н. Малинин.

В автoмобильной промышленности широко используются испытательные стенды с беговыми барабанами. На таком стенде автомобиль устанавливают ведущими колесами на специальные барабаны, которые имитируют дорогу: мотор работает, колеса вертятся, «дорога» движется, а машина стоит.

И вот однажды в кабину паровичка, стоявшего на таком стенде, сели Малинин и профессор Чудаков (мировая величина в области теории автомобиля). Сели и сидят в полной тишине. Только профессор кнопки нажимает и на приборы поглядывает. Инженер поскучал и спрашивает: «Не пора ли в путь?» «А мы давно уже едем», — отвечает профессор. Спидометр показывал 20 км/ч — величину по тем временам приличную.

По нашим понятиям улицы тогда были пустынны. Но чтобы услышать шум работы парового автомобиля даже на такой улице, приходилось прикладывать ухо к выхлопной трубе парогенератора. Тут тоже требуется пояснение. Двигатель автомобиля «Добль-Беслер» работал по замкнутому циклу с конденсацией пара.

1900 год, США. Паровые грузовики на улицах Денвера

70 л воды хватало на 500 км езды. Выпускать пар на улицу приходилось лишь в редких случаях. Поэтому при хорошо сделанных механизмах в автомобиле просто ничего не могло шуметь, а из парогенератора доносился лишь шум пламени.

Ездить на всем, что горит

Сгорание топлива в цилиндре двигателя внутреннего сгорания (ДВС) протекает при постоянно меняющихся количестве кислорода и температуре, что приводит к образованию огромного объема токсичных веществ. Легковой автомобиль за час работы вырабатывает их достаточно для гибели не одного человека.

В горелке парогенератора все процессы протекают при постоянных и наилучших условиях, поэтому токсичность выхлопа парового автомобиля в сотни раз ниже, чем у автомобиля с ДВС. Проще говоря, сгорание топлива в парогенераторе — длительный непрерывный процесс, как в кухонной газовой горелке. В нем успевают полностью завершиться почти все реакции, чего не удается сделать в цилиндре ДВС.

1910 год, Англия. После тысячемильного пробега

Важнейший показатель автомобиля — расход топлива. «Добль-Беслер» выпуска 1924 года при массе 2200 кг в среднем расходовал 18 л бензина на 100 км. Это было довольно мало для того времени и оставалось приемлемо для машин такой массы на протяжении 40 лет. Заметим, что в горелке парогенератора могло гореть любое жидкое топливо — бензин, керосин, спирт, растительное масло, мазут… Хотя задача удешевления или экономии топлива в данном случае не ставилась. Автомобиль предназначался для миллионеров.

Наследник самогонного аппарата

Самый важный элемент автомобиля — парогенератор. Он был разработан американскими изобретателями братьями Добль еще в 1914 году и выпускался в Детройте. Он состоял из 10 соединенных последовательно плоских змеевиков в корпусе из жаропрочной стали. Стенки корпуса также были увиты трубками с водой. Холодная вода из конденсатора при помощи небольшого насоса подавалась вначале в трубку, обвивающую стенки корпуса, где немного подогревалась. Это уменьшало потери тепла через стенки. А дальше она поступала в змеевики, где закипала и превращалась в перегретый пар с температурой 450 °C и давлением 120 атмосфер.

1953 год, Марлоу (Англия). Фермер Артур Наппер направляется на паровом тракторе на соревнования трактористов

Такие параметры пара для того времени считались крайне высокими. Как говорит теория, с увеличением температуры и давления пара КПД паровой машины растет. Воспользовавшись этим, братья Добль сделали ее весьма экономичной и легкой. Она имела два цилиндра, и каждый из них был сдвоенным. Пар вначале подавался в верхнюю часть малого диаметра, где расширялся и совершал работу. После этого он поступал в нижнюю часть, имевшую большие диаметр и объем, где совершал дополнительную работу. Принцип двойного расширения был особенно полезен при движении по городу. Здесь часто (например, в момент разгона или троганья с места) в машину подавались большие порции пара, которые бы не сумели отдать всю свою энергию, расширяясь однократно.

Отработанный пар отдавал свое тепло холодной воде, поступавшей в парогенератор, и лишь только после этого попадал в конденсатор, где превращался в воду. Вода подавалась в парогенератор порциями, достаточными лишь для совершения одного-двух ходов поршня паровой машины. Поэтому в парогенераторе единовременно содержалось лишь несколько десятков граммов воды, и это его делало абсолютно взрывобезопасным. При разрыве трубки пар струйкой втекал в топку и автоматика выключала горелку. Подобный случай произошел лишь однажды — после пробега более чем в 200 тысяч километров. Об этом узнали только потому, что автомобиль перестал заводиться. Ремонт длился не более часа и сводился к замене змеевика.

1955 год. Карьерный паровой грузовик за работой

Куда они делись

Возникает вопрос: если паровые автомобили так хороши, то почему же они не вытеснили автомобили с ДВС? Паровой двигатель, насыщенный автоматикой, множеством вспомогательных агрегатов, в начале XX века был сложнее и дороже, чем ДВС, и при этом имел меньший КПД. К тому же, занимал довольно много места — в первую очередь из-за необходимости иметь отдельный бак с водой. Токсичность же выхлопа в те времена никто не ограничивал. И паровая машина проиграла.

С тех пор ДВС значительно усложнился, оброс электроникой, а для снижения токсичности его выхлопа используется специальная система. Сложными стали и трансмиссии. Так что неизвестно, на чем бы мы ездили сейчас, появись экологические требования на полвека раньше.

История паровых машин

Статья опубликована 19.05.2014 05:36
Последняя правка произведена 19.05.2014 05:58
Паровая машина

О истории развития парового двигателя, достаточно подробно описано в этой статье. Тут же - наиболее известные решения и изобретения времен 1672-1891 года.

Первые наработки.

Начнем с того, что еще в семнадцатом веке пар стали рассматривать как средство для привода, проводили с ним всяческие опыты, и лишь только в 1643 году Эванджелистом Торричелли было открыто силовое действие давления пара. Кристиан Гюйгенс через 47 лет спроектировал первую силовую машину, приводившуюся в действие взрывом пороха в цилиндре. Это был первый прототип двигателя внутреннего сгорания. На аналогичном принципе устроена водозаборная машина аббата Отфея. Вскоре Дени Папен решил заменить силу взрыва на менее мощную силу пара. В 1690 году им была построена первая паровая машина, известная также как паровой котел.

Она состояла из поршня, который с помощью кипящей воды перемещался в цилиндре вверх и за счет последующего охлаждения снова опускался – так создавалось усилие. Весь процесс происходил таким образом: под цилиндром, который выполнял одновременно и функцию кипятильного котла, размещали печь; при нахождении поршня в верхнем положении печь отодвигалась для облегчения охлаждения.

Автомобиль Куньо Реактивный автомобиль Ньютона Паровая машина Фербиста Превью - увеличение по клику.

Позже два англичанина, Томас Ньюкомен и Коули – один кузнец, другой стекольщик, – усовершенствовали систему путем разделения кипятильного котла и цилиндра и добавления бака с холодной водой. Эта система функционировала с помощью клапанов или кранов – одного для пара и одного для воды, которые поочередно открывались и закрывались. Затем англичанин Бэйтон перестроил клапанное управление в подлинно тактовое.

Применение паровых машин на практике.

Машина Ньюкомена вскоре стала известна повсюду и, в частности, была усовершенствована, разработанной Джеймсом Уаттом в 1765 году системой двойного действия. Теперь паровая машина оказалась достаточно завершенной для использования в транспортных средствах, хотя из-за своих размеров лучше подходила для стационарных установок. Уатт предложил свои изобретения и в промышленности; он построил также машины для текстильных фабрик.

Первая паровая машина, используемая в качестве средства передвижения, был изобретена французом Николя Жозефом Куньо, инженером и военным стратегпм-любителем. В 1763 или 1765 году он создал автомобиль, который мог перевозить четырех пассажиров при средней скорости 3,5 и максимальной – 9,5 км/час. За первой попыткой последовала вторая – появился автомобиль для транспортировки орудий. Испытывался он, естественно, военными, но из-за невозможности продолжительной эксплуатации (непрерывный цикл работы новой машины не превышал 15 минут) изобретатель не получил поддержки властей и финансистов. Между тем в Англии совершенствовалась паровая машина. После нескольких безуспешных, базировавшихся на машине Уаттa попыток Мура, Вильяма Мердока и Вильяма Саймингтона, появилось рельсовое транспортное средство Ричарда Тревисика, созданное по заказу Уэльской угольной шахты. В мир пришел активный изобретатель: из подземных шахт он поднялся на землю и в 1802 году представил человечеству мощный легковой автомобиль, достигавший скорости 15 км/час на ровной местности и 6 км/час на подъеме.

Паровая Карета Гарни Карета Хилла Паровая карета Превью - увеличение по клику.

Приводимые в движение паром транспортные средства все чаще использовались и в США: Натан Рид в 1790 году удивил жителей Филадельфии своей моделью парового автомобиля. Однако еще больше прославился его соотечественник Оливер Эванс, который спустя четырнадцать лет изобрел автомобиль-амфибию. После наполеоновских войн, во время которых «автомобильные эксперименты» не проводились, вновь началась работа над изобретением и усовершенствованием паровой машины. В 1821 году ее можно было считать совершенной и достаточно надежной. С тех пор каждый шаг вперед в сфере приводимых в движение паром транспортных средств определенно способствовал развитию будущих автомобилей.

В 1825 году сэр Голдсуорт Гарни на участке длиной 171 км от Лондона до Бата организовал первую пассажирскую линию. При этом он использовал запатентованную им карету, имевшую паровой двигатель. Это стало началом эпохи скоростных дорожных экипажей, которые, однако, исчезли в Англии, но получили широкое распространение в Италии и во Франции. Подобные транспортные средства достигли наивысшего развития с появлением в 1873 году «Реверанса» Амедэ Балле весом 4500 кг и «Манселя» – более компактного, весившего чуть более 2500 кг и достигавшего скорости 35 км/час. Оба были предвестниками той техники исполнения, которая стала характерной для первых «настоящих» автомобилей. Несмотря на большую скорость кпд паровой машины был очень маленький. Болле был тем, кто запатентовал первую хорошо действующую систему рулевого управления, он так удачно расположил управляющие и контрольные элементы, что мы и сегодня это видим на приборном щитке.

транспортное средство Болле-Марселя Машина Бордино Превью - увеличение по клику.

Несмотря на грандиозный прогресс в области создания двигателя внутреннего сгорания, сила пара все еще обеспечивала более равномерный и плавный ход машины и, следовательно, имела много сторонников. Как и Болле, который построил и другие легкие автомобили, например Rapide в 1881 году со скоростью движения 60 км/час, Nouvelle в 1873 году, которая имела переднюю ось с независимой подвеской колес, Леон Шевроле в период между 1887 и 1907 годами запустил несколько автомобилей с легким и компактным парогенератором, запатентованным им в 1889 году. Компания De Dion-Bouton, основанная в Париже в 1883 году, первые десять лет своего существования производила автомобили с паровым двигателями и добилась при этом значительного успеха – ее автомобили выиграли гонки Париж-Руан в 1894 году.

Машина Хенкока Трехколесник Пекори Превью - увеличение по клику.

Успехи компании Panhard et Levassor в использовании бензина привели, однако, к тому, что и De Dion перешел на двигатели внутреннего сгорания. Когда братья Болле стали управлять компанией своего отца, они сделали то же самое. Затем и компания Chevrolet перестроила свое производство. Автомобили с паровыми двигателями все быстрее и быстрее исчезали с горизонта, хотя в США они использовались еще до 1930 года. На этом самом моменте и прекратилось производство и изобретение паровых машин

Плюсы и минусы парового двигателя и машины

Начнем рассмотрение темы с определения самого термина, паровая машина, это двигатель наружного сгорания, реорганизовывающий энергию пара жидкости, в работу выполняемую поршнем, с последующим преобразованием во вращение передаточного вала. В более обширном значении паровая машина — всякий агрегат с наружным сгоранием топлива, который реорганизовывает кинетическую энергию рабочего тела в полезную работу.

Первая такая машина сконструирована в XVII и состояла из цилиндра с одним поршнем, поднимающегося под давлением пара, а опускался под собственным весом.

По этой же схеме были сооружены в 1705 году насосные паровые машины для откачивания воды. Серьезные доработки в вакуумной машине были осуществлены Джеймсом Уаттом в далеком 1770 году. Последующей значительной доработкой данного типа двигателя (использование рабочим телом пара воды под высоким давлением) было произведено Оливером Эвансом уже в 1789 году.

Преимущества парового двигателя

  • Использование любого горючего топлива. Ключевым преимуществом таких машин, как двигателей наружного сгорания топлива, в том, что по причине изолирования котла от узлов паровой машины появляется возможность использовать произвольное топливо – от дров до урана. Самый яркий пример этого преимущества использование энергии атомного ядра, ибо реактор не способен вырабатывать механическую энергию, а генерирует тепло, которое и применяется для испарения жидкости, повергающего в ход паровые машины (обычно это турбины).
  • Использование возобновляемых источников энергии. Вторым важным фактором является то, что есть и иные источники энергии, которые невозможно использовать в других двигателях работающих на горюче смазочных материалах, к примеру, солнечная или гидроэнергия. Также любопытным курсом разработок есть применение разности внутренней энергии Мирового океана на различных его глубинах.
  • Стабильность работы не зависит от значения атмосферного давления. Локомотивы с паровыми агрегатами хорошо рекомендуют себя на значительных высотах, связано это с тем, что их работоспособность не снижается в связи с понижением атмосферного давления. Паровозы по сей день применяются в горах Латинской Америки.
  • Меньше масса по сравнению с остальными видами двигателей. Также, паровые поезда существенно легче, чем их дизельные или электрические аналоги, что чрезвычайно важно для горных колей. Особенностью пародвигателей есть то, что им не нужна трансмиссия, усилие передается непосредственно колёсам.
  • Посейчас безальтернативно используется на электрогенерирующих станциях. Паровые турбины, принципиально являющиеся вариацией паровой машины, достаточно широко применяются в качестве силовых агрегатов электрогенераторов. Ориентировочно 86 % электроэнергии, вырабатываемой в мире, производится с применением турбин на пару.

Недостатки парового двигателя

  • Загрязнение окружающей среды. Важнейшим недостатком на сегодняшний день является низкая экологичность двигателя. В процессе сгорания топлива высвобождаются: азот, сера. Также в атмосферу отправляется, большее количество тяжелых металлов.. Нельзя забывать и о том, что совершается высвобождение серьезного количества тепла. Это существенно сказывается и на климат Земли.
  • Высокий расход топлива. Длившаяся целый век работа над доработкой конструкции паровой машины так и не привела к триумфу. И на сегодняшний день паровой поршневой силовой агрегат является самым «марнотратным» из всех остальных машин-двигателей.
  • КПД так и не перешагнул отметку в 10%. Машины внешнего сгорания в свое время способствовали повсеместному использованию в коммерческих целях машин в промышленности и явились энергетическим фундаментом промышленного прорыва XVIII века. Но им было суждено уступить пальму первенства двигателям внутреннего сгорания, паровым турбинам и электромоторам, КПД которых оказалось значительно выше.
  • Высокая эксплуатационная опасность. Хоть паровые двигатели и отличаются высокой надежностью и выносливостью, все же риски при эксплуатации в шахтах мануфактурах не раз давали о себе знать, взрывы и утечки пара могут серьезно навредить обслуживающему его персоналу и прилегающему имуществу.
  • Наличие кривошипно-шатунного механизма. Кривошипно-шатунный механизм это конструкционный недочет, который устранить не удалось, а негативных последствий вытекает из него более чем достаточно, к примеру: низкооборотистость двигателя, следовательно, и тихоходность транспорта на основе данного типа двигателя, громоздкость конструкции, следовательно, невозможность установки допустим на воздушный транспорт.

Применение паровой машины

До конца первой половины XX века паровые двигатели повсеместно применялись во многих областях хозяйственной деятельности, по причине множества достоинств (высокая надёжность, работа с большими перепадами нагрузок, простота). К областям применения относится: транспорт. предприятия легкой и тяжелой промышленности с силовым и тепловым потреблением:

Однозначно употреблялись как привод в насосных станциях, паровозах, пароходах, тягачах, лесопильно-сушильных агрегатах и т.д.

Вывод

Основные изъяны парового поршневого силового агрегата такие как: не высокий коэффициент полезного действия, громоздкость конструкции и низкая оборотистость — с эволюцией производственных мощностей и вездесущим распространением машин и механизмов становились всё ощутимее. Возникла объективная необходимость в альтернативных видах тепловых двигателей, и они были разработаны:

  1. Двигатель внутреннего сгорания.
  2. Двигатель Стирлинга.
  3. Роторный двигатель.
  4. Твердотельный двигатель.
  5. Реактивный двигатель.

Справедливости ради следует отметить, что двигатели внешнего сгорания полностью не «вымерли», а лишь нашли свою нишу во всем многообразии социально-промышленных потребностей человека.

Похожие записи


Смотрите также