8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Двс принцип работы анимация


Познавательная анимация механизмов и устройств | Екабу.ру

Устройство для черчения овалов:

Карданово соединение (шарнир Гука).
В автомобиле карданный вал служит для передачи крутящего момента от коробки передач (раздаточной коробки) к ведущим мостам в случае классической или полноприводной компоновки. Также используется в травмобезопасной рулевой колонке для соединения рулевого вала и рулевого исполнительного механизма (рулевого редуктора или рулевой рейки).

Спаренный кардан:

Четырехтактный двигатель внутреннего сгорания:
(1-впуск, 2-сжатие, 3-рабочий ход, 4-выпуск)

Рядный четырехцилиндровый двигатель внутреннего сгорания:

Кривошипно-шатунный механизм:

Двухтактный двигатель внутреннего сгорания с глушителем:

Роторно-лопастной двигатель внутреннего сгорания:

Радиальный двигатель - поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы:

Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля):


РПД, вид в объеме:

Бесшатунный двигатель Вуля:

Электродвигатель. При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера, ротор приходит во вращение

Двигатель Стерлинга. тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания.


Работа парового двигателя:

Паровая машина - тепловой двигатель внешнего сгорания:

Паровая машина для откачивания воды из шахты:

Это знакомо всем девушкам, наверное))) Швейная машинка:


Еще швейная машинка:

Принцип работы пейнтбольного маркера:


То же самое, вид 3Д:

Механизм перезарядки пистолета:

Бортовое орудие на эсминцах:

Бесшатунный двигатель Фролова (в этом двигателе нет коленвала):

Мальтийский механизм (механизм прерывистого движения). Основное применение механизм получил в кинопроекторах в качестве скачкового механизма для прерывистого перемещения киноплёнки на шаг кадра.

Шарнир равных угловых скоростей. Используется в системах привода управляемых колёс легковых автомобилей с независимой подвеской и, реже, задних колёс.

Винт Архимеда - механизм, исторически использовавшийся для передачи воды из низколежащих водоёмов в оросительные каналы.

Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя.

Принцип работы кольцевого замкового устройства, которое используется в парашютах:

Схема действия гейзера. Деятельность гейзера характеризуется периодической повторяемостью покоя, наполнения котловинки водой, фонтанирования пароводяной смеси и интенсивных выбросов пара, постепенно сменяющихся спокойным их выделением, прекращением выделения пара и наступлением стадии покоя.

Схема работы женской логики. Данный механизм широко распространен среди некоторых особей женского пола.

Внутреннее устройство разных типов двигателей (15 гифок)

Вашему вниманию принцип работы разных двигателей в анимашках.


Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.


Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно. Цикл повторяется заново.

Электродвигатель
Вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором. Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.


Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Авиационный двигатель Гнома (Gnome) был один из нескольких популярных роторных двигателей военных самолетов времен Первой Мировой войны. Коленчатый вал этого двигателя крепился к корпусу самолета, в то время как картер и цилиндры вращались вместе с пропеллером.

Двигатель Гнома (Gnome) уникален тем, что его впускные клапана расположены внутри поршня. Работа данного двигателя осуществляется по все известному циклу Отто. В каждой заданной точке каждый цилиндр двигателя находится в различной фазе цикла. На представленном чертеже с зеленым шатуном изображен главный, основной цилиндр.

Преимущества данного двигателя:
Нет необходимости в установке противовесов.
Цилиндры постоянно находятся в движении, что создает хорошее воздушной охлаждения, что позволяет избегать системы
жидкостного охлаждения.
Вращающиеся цилиндры и поршни создают вращающийся момент, что позволяет избегать применение маховика.
Недостатки:
Плохое маневрирование самолета из-за большого веса вращающегося двигателя, т.н гироскопический эффект
Плохая сисема смазки, поскольку центробежные силы заставляи смазочное масло скапливать на перефирии двигателя. Масло
приходилось смешивать с топливом для обеспечения надлежащего смазывания.

Ракетный двигатель.


Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении.

Турбореактивный двигатель (ТРД)


Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективное вращение.Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).


На валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина. Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

Турбовентиляторный двигатель (ТВлД)


Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

4-хтактный ДВС

2-хтактный ДВС

Роторно-поршневой ДВС

Двухтактный оппозитный двигатель (два поршня встречного движения в одном цилиндре).

Роторно-лопастной ДВС

Источник: p-i-f.livejournal.com

Анимации работы различных двигателей и механизмов

 Получение электроэнергии

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Несмотря на то, что ДВС относятся к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и т. д.), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте
ДВС 16-ти клапанный 4-х цилиндровый


Типы ДВС

Поршневой ДВС

Роторный ДВС

Газотурбинный ДВС

Циклы работы поршневых ДВС

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска. В двигателе рабочий цикл может быть осуществлен по следующей широко применяемой схеме:

1. В процессе впуска поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), а освобождающееся надпоршневое пространство цилиндра заполняется смесью воздуха с топливом. Из-за разности давлений во впускном коллекторе и внутри цилиндра двигателя при открытии впускного клапана смесь поступает (всасывается) в цилиндр в момент времени, называемый углом открытия впускного клапана φа.

Воздушно-топливная смесь и продукты сгорания (всегда остающиеся в объёме пространства сжатия от предыдущего цикла), смешиваясь между собой, образуют рабочую смесь. Тщательно приготовленная рабочая смесь повышает эффективность сгорания топлива, поэтому её подготовке уделяется большое внимание во всех типах поршневых двигателей.

Количество воздушно-топливной смеси, поступающее в цилиндр за один рабочий цикл, называется свежим зарядом, а продукты сгорания, остающиеся в цилиндре к моменту поступления в него свежего заряда — остаточными газами.

Чтобы повысить эффективность работы двигателя, стремятся увеличить абсолютную величину свежего заряда и его весовую долю в рабочей смеси.

2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. к в.м.т. и уменьшая объём надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.

Двигатели внутреннего сгорания строятся с возможно большей степенью сжатия, которая в случаях принудительного зажигания смеси достигает значения 10—12, а при использовании принципа самовоспламенения топлива выбирается в пределах 14—22.

3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.

В рассматриваемой схеме рабочая смесь в нужный момент вблизи в.м.т. поджигается от постороннего источника с помощью электрической искры высокого напряжения (порядка 15 кв). Для подачи искры в цилиндр служит свеча зажигания, которая ввер­тывается в головку цилиндра.

Для двигателей с воспламенением топлива от тепла, выделяющегося от предварительно сжатого воздуха, запальная свеча не нужна. Такие двигатели снабжаются специальной форсункой, через которую в нужный момент в цилиндр впрыскивается топливо под давлением в 100 ÷ 300 кГ/см² (≈ 10—30 Мн/м²) и более.

4. В процессе расширения раскаленные газы, стремясь расшириться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на шатунную шейку коленчатого вала и проворачивает его.

5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталкивает отработавшие газы из цилиндра. Продукты сгорания остаются только в объёме камеры сгорания, откуда их нельзя вытеснить поршнем. Непрерывность работы двигателя обеспечивается последующим повторением рабочих циклов.

Процессы, связанные с подготовкой рабочей смеси к сжиганию её в цилиндре, а также освобождением цилиндра от продуктов сгора­ния, в одноцилиндровых двигателях осуществляются движением поршня за счёт энергии маховика, которую он накапливает в про­цессе рабочего хода.

В многоцилиндровых двигателях вспомогательные ходы каждого из цилиндров выполняются за счёт работы других (соседних) цилиндров. Поэтому эти двигатели в принципе могут работать без маховика.

Для удобства изучения рабочий цикл различных двигателей расчленяют на процессы или, наоборот, группируют процессы рабочего цикла с учетом положения поршня относительно мертвых точек в цилиндре. Это позволяет все процессы в поршневых двигателях рассматривать в зависимости от перемещения поршня, что более удобно.

Часть рабочего цикла, осуществляемая в интервале перемещения поршня между двумя смежными мертвыми точками, называется тактом.

Такту, а следовательно, и соответствующему ходу поршня присваивается название процесса, который является основным при данном перемещении поршня между двумя его мертвыми точками (положениями).

В двигателе каждому такту (ходу поршня) соответствуют, например, вполне определённые основные для них процессы: впуск, сжатие, расширение, выпуск. Поэтому в таких двигателях различают такты: впуска, сжатия, расширения и выпуска. Каждое из этих четырёх названий соответственно присваивается ходам поршня.

В любых поршневых двигателях внутреннего сгорания рабочий цикл складывается из рассмотренных выше пяти процессов по ра­зобранной выше схеме за четыре хода поршня или всего за два хода поршня. В соответствии с этим поршневые двигатели подразделяют на двух- и четырёхтактные.


Работа двигателя - наглядная анимация с комментариями

Многие автолюбители и другие люди, далёкие от знаний и понятия того как устроен двигатель автомобиля хотят наглядно увидеть работу мотора и рассмотреть все процессы происходящие внутри. Если вы не студент соответствующих учебных заведений, где в специальных классах и аудиториях размещают макеты двигателей в разрезе и другие учебные материалы, то понять как  все же устроен двигатель достаточно сложно. Сухое описание в книжках о том сколько тактов проходит в момент работы двигателя и какой там точки достигает поршень в определенный момент расчитано на людей которые как минимум могут это представить и не настолько далеки от этой темы. Редкие черно-белые картинки в подобной литературе так же не способны пролить свет на этот вопрос. Поэтому представляю вашему вниманию современные гиф анимации на тему работы двигателя изнутри. Визуализация всех процессов поможет вам более глубоко понимать принцип устройства и работы двигателя в вашем автомобиле.

На данной анимации представлен рядный цетырех тактный двигатель с двумя впускными и двумя выпускными клапанами на каждом      цилиндре.  Первый такт — впуск, в цилиндр поступает горючая смесь приготовленная в карбюраторе и засасываемая в цилиндр по впускному коллектору, когда открываются впускные клапаны.  Данная анимация показывает впрыск инжектором, поэтому смесь образуется уже непосредственно в цилиндре. Открываются клапаны, заходит поток воздуха и одновременно впрыскивается топливо. Второй такт — сжатие. В этот момент впускные клапаны закрываются и поршень поднимается вверх по цилиндру сжимая смесь топлива и воздуха в объеме. Третий такт — рабочий ход поршня вниз по цилиндру, вследствии того, что происходит воспламенение горючей смеси после того как свеча зажигания дает искру. От энергии воспламенения, что по сути является маленьким взрывом, поршень отталкивает вниз. Эта волна и заставляет шатуны вращать коленвал и соответственно приводить в движение маховик и передавать вращение на колеса автомобиля. Так работает двигатель. В четвертом такте поршень возвращается вверх по цилиндру, открываются выпускные клапаны и отработанные газы через выпускной коллектор и систему выхлопных газов (глушитель, выхлопную трубу) попадают в атмосферу. Далее такты повторяются и так до тех пор пока не закончится топливо или двигатель не остановят выключением зажигания.

На этой анимации можно видеть как приводятся в движение валы газораспределительного механизма и какое положение занимают поршни в цилиндрах по отношению друг друга во время работы двигателя. Цветами схематически обозначены такты, в соответствии с теми что были присвоены им на первой анимации выше.

Здесь можно видеть как работает трамблер (разносчик искры по цилиндрам, распределитель зажигания) и наблюдать порядок выдачи искры по цилиндрам. В нужный момент бегунок, находяшийся на валу распределителя зажигания передает напряжение к нужному участку крышки трамблера и по высоковольтному кабелю — к нужному цилиндру. Высоковольтный кабель одетый на свечу зажигания, заставляет её работать выдавая искру внутрь цилиндра. Она уже зажигает смесь.

На данной анимации показано как поток воздуха захватывается черех воздухозаборник, проходит через воздушный фильтр и образуя смесь с топливом попадает в цилиндры. Здесь же ниже показана система смазки двигателя, которая обеспечивает работу всех вращаемых узлов двигателя. Маслозаборник расположен в нижней части углубления поддона и при помощи насоса масло поступает вверх по масляным каналам и попадает в необходимые места.

Показана работа инжектора и контроллера определяющего впрыск в необходимый момент.

Наглядная демонстрация работы некоторых механизмов

Карданная передача — конструкция, передающая крутящий момент между валами, пересекающимися в центре карданной передачи, и имеющими возможность взаимного углового перемещения. Широко используется в различных областях человеческой деятельности, когда трудно обеспечить соосность вращающихся элементов. Название передача получила от имени Джероламо Кардано, описавшей ее в XVI в.

 

 

Архимедов винт, винт Архимеда.

Механизм, за счёт которого обеспечивается прерывистое движение секундной стрелки (мальтийский механизм с внешним зацеплением).

Шарнир равных угловых скоростей
(сокращённо ШРУС, в просторечии — «граната») обеспечивает передачу крутящего момента при углах поворота до 70 градусов относительно оси. ШРУСы изредка называют «гомокинетическими шарнирами» (от др.-греч. ὁμός — «равный, одинаковый» и κίνησις — «движение», «скорость»).

Используется в системах привода управляемых колёс легковых автомобилей с независимой подвеской и, реже, задних колёс.

Первые попытки реализовать передний привод осуществлялись при помощи обычных карданных шарниров.

Однако, если колесо перемещается в вертикальной плоскости и одновременно является поворотным, обычному наружному шарниру полуоси приходится работать в исключительно тяжелых условиях — с углами 30-35°. Но при углах больших, чем 10-12°, в карданной передаче резко увеличиваются потери мощности, к тому же вращение передаётся неравномерно, растёт износ шарнира, быстро изнашиваются шины, а шестерни и валы трансмиссии начинают работать с большими перегрузками. Таким образом, требовался особый шарнир — шарнир равных угловых скоростей — лишенный таких недостатков, передающий вращение равномерно вне зависимости от угла между соединяемыми валами.

 

 

Радиальный двигатель.

 

 

Возвратно-поступательные движения.

 

 

Вот так работает швейная машина.

 

ЭЛЕКТРИЧЕСКИЙ двигатель (электродвигатель), электрическая машина, преобразующая электрическую энергию в механическую. Основной вид двигателя в промышленности, на транспорте, в быту.

 

 

Схема работы 4-тактного двигателя внутреннего сгорания.

Схема работы 2-тактного двигателя внутреннего сгорания.

 

Двухтактный оппозитный двигатель
(два поршня встречного движения в одном цилиндре)

 

Роторно-поршневой двигатель.

 

Роторно-лопостной двигатель внутреннего сгорания

Чем РЛДВС лучше современного поршневого двигателя?

Эффективный КПД на 10-12% выше.
На всех режимах работы расход топлива меньше, чем у поршневого двигателя.
Малое количество деталей.
Простота контрукции. Нет сложного механизма газораспределения. Более технологичен.
Эффективный газообмен способствует лучшему сжиганию топлива и меньшей токсичности.
Хорошая уравновешенность.
В несколько раз лучше удельные массогабаритные показатели.
Несравнимо малый расход смазочных материалов.
Существенно ниже стоимость производства.

Паровой двигатель.

Двигатель Стирлинга
Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре.

 

Бесшатунный дизельный двигатель Вуль Vool механизм Баландина.

ДВС системы Сергея Сергеича Баландина, в период с 1980 по 1984, был спроектирован, расчитан и ПОЛНОСТЬЮ ИЗГОТОВЛЕН в Томске.

Схема мотора Фролова В этом двигателе нет коленвала.

 

 

 

Как открыть замок двери ключом

Как открыть замок без ключа


А вот как можно открыть замок без ключа.

Данный инструмент называется  отмычкой.

Ей подбирается нужное давление, так же как при использовании ключа.

 

___________
Как работает автомат Калашникова (АК-47): 

Как работает электромотор 

Работа четырехтактного двигателя бензинового двигателя: 

Радиальный двигатель самолета: 

Как работает швейная машинка 

Как работает «молния»: 

Проволочная сетка: 

 

 

 

 

 

 

 

 

 

 

Как работает двигатель постоянного тока? (анимация и видео): shkola30 — LiveJournal

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на  примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой,  если разобрать один из электродвигателей, то там много деталей, назначение которых не  очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем  случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.



Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.


Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.



Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах - специальная обмотка, служащая для улучшения условий коммутации.




Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.


Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.



Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора


Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. ВОТ ТУТ можно прочитать про него подробнее.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли зам

Принцип работы различных механизмов. Гиф анимация.

Принцип работы различных механизмов. Гиф анимация.


За работой этих устройств можно наблюдать бесконечно. Машины - роботы выполняют свои задачи точно, аккуратно и беспощадно.
Gif-анимация наглядно отображает принципы работы различных механизмов.

 

Так работает молния. Она  состоит из двух текстильных лент, на которых закреплены идущие в шахматном порядке пластмассовые или металлические звенья в виде раздельных зубцов. Соединение или разъединение половинок выполняется при помощи замка (слайдера, «собачки» или бегунка), скользящего по лентам, при этом каждое звено фиксируется между парой звеньев с противоположной стороны.

 

 

Мальтийский механизм — механизм прерывистого движения, преобразующий равномерное вращательное движение в прерывистое вращательное движение. Механизм применяется в часах и пленочных кинопроекторах.

 

Принцип работы бытового  вентилятора.


На одном конце вала, который вращается при помощи электродвигателя, крепятся лопасти вентилятора. На другом конце вала стоит червячная передача, соединенная редуктором с кривошипом, который заставляет вентилятор плавно поворачиваться из стороны в сторону. Такой режим обеспечивает периодическое изменение направления потока воздуха и создаёт обширный сектор прохлады. Если такой изыск не нужен, режим поворота можно отключить с помощью специального переключателя (вал вентилятора отсоединятся от редуктора).

 

 

Принцип работы и устройство врезного цилиндрового замка. Как ключ открывает дверь.

При использовании  ключа все пины в замке выстраиваются в одну линию,  что позволяет беспрепятственно провернуть ротор (открыть замок).

 

 

 

Устройство ручной осколочной гранаты - лимонки.


После удаления предохранительной чеки рычаг рычаг под действием пружины проворачивается и освобождает ударник. Ударник под действием боевой пружины накалывает капсюль-воспламенитель, луч огня от которого передается на замедлитель, а после выгорания замедлителя на заряд детонатора, что приводит к взрыву заряда гранаты.

 

 

Как стреляет пистолет.

Нажатый курок  наносит удар по ударнику, который разбивает капсюль патрона. В результате этого воспламеняется пороховой заряд.  Пуля давлением пороховых газов выбрасывается из канала ствола. Затвор под давлением газов, передающихся через дно гильзы, отходит назад, удерживая выбрасывателем гильзу и сжимая возвратную пружину. Гильза при встрече с отражателем выбрасывается наружу через окно затвора.

Затвор при отходе в крайнее заднее положение поворачивает курок на цапфах назад и ставит его на боевой взвод. Отойдя назад до отказа, затвор под действием возвратной пружины возвращается вперед. При движении вперед затвор досылателем продвигает из магазина очередной патрон и досылает его в патронник. Канал ствола заперт свободным затвором; пистолет снова готов к выстрелу.

 

 

 

Как работает игла швейной машинки. Как образуется строчка.

Механизм иглы сообщает игле, в ушко которой заправлена нитка, возвратно-поступательное или колебательное движение. В результате осуществляется прокол иглой материала, провод через него верхней нитки и создание у ушка иглы петли. Механизм челнока обеспечивает захват петли, её обвод вокруг шпуледержателя. Механизм нитепритягивателя сматывает нитку с катушки, сдёргивает её с челнока и затягивает стежок. Механизм двигателя ткани передвигает материал на длину стежка.

 

Как работает рядный четырёхцилиндровый двигатель.

 

 

 

 

Сердце человека это тоже механизм.

 

 

Сегодня  в магазине мы покупаем всегда  заточенные карандаши.  Эта анимационная  гифка наглядно иллюстрирует, как они затачиваются в промышленных масштабах.

 

 

Тест  - драйв, ОТК, ГОСТ  называйте, как хотите, но именно так проводится проверка на качество маркеров. Кстати, результат проверки  можно использовать как обои.

 

 

Макароны или паста (по итальянски), типа спиральки, делаются, то есть нарезаются именно так.

 

Брутальный робот - механизм для изготовления цепей.

 

Робот упаковывает батарейки.

 

Крендельки.

 

Простой механизм для сортировки монет по номиналу.

 

И, напоследок, не много юмора.
Механизм для изготовления самолетиков из бумаги

 

Робот - чемпион по сборке Кубика - Рубика

 

Не хотите -ли узнать, как работают все двигатели? (ФОТО, АНИМАЦИЯ)

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.


Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.
В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.
В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно. Цикл повторяется заново.


электродвигатель
Вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором. Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Авиационный двигатель Гнома (Gnome) был один из нескольких популярных роторных двигателей военных самолетов времен Первой Мировой войны. Коленчатый вал этого двигателя крепился к корпусу самолета, в то время как картер и цилиндры вращались вместе с пропеллером.

Двигатель Гнома (Gnome) уникален тем, что его впускные клапана расположены внутри поршня. Работа данного двигателя осуществляется по все известному циклу Отто. В каждой заданной точке каждый цилиндр двигателя находится в различной фазе цикла. На представленном чертеже с зеленым шатуном изображен главный, основной цилиндр.

Преимущества данного двигателя:
Нет необходимости в установке противовесов.
Цилиндры постоянно находятся в движении, что создает хорошее воздушной охлаждения, что позволяет избегать системы жидкостного охлаждения.
Вращающиеся цилиндры и поршни создают вращающийся момент, что позволяет избегать применение маховика.
Недостатки:
Плохое маневрирование самолета из-за большого веса вращающегося двигателя, т.н гироскопический эффект 
Плохая сисема смазки, поскольку центробежные силы заставляи смазочное масло скапливать на перефирии двигателя. Масло приходилось смешивть с топливом для обеспечения надлежащего смазывания.

Ракетный двигатель.

Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении.

Турбореактивный двигатель (ТРД)

Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.
На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.
Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).

На валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина. Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

Турбовентиляторный двигатель (ТВлД)

Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

4-хтактный ДВС

2-хтактный ДВС

Роторно-поршневой ДВС

Двухтактный оппозитный двигатель (два поршня встречного движения в одном цилиндре).

Роторно-лопастной ДВС


Смотрите также