8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Двигатель внутреннего сгорания принцип работы


устройство, работа, КПД :: SYL.ru

В подавляющем большинстве автомобилей используются в качестве топлива для двигателей производные нефти. При сгорании этих веществ выделяются газы. В замкнутом пространстве они создают давление. Сложный механизм воспринимает эти нагрузки и трансформирует их сначала в поступательное движение, а затем - во вращательное. На этом основан принцип работы двигателя внутреннего сгорания. Далее вращение уже передается на ведущие колеса.

Поршневой двигатель

В чем преимущество такого механизма? Что дал новый принцип работы двигателя внутреннего сгорания? В настоящее время им оборудуются не только автомобили, но и сельскохозяйственный и погрузочный транспорт, локомотивы поездов, мотоциклы, мопеды, скутера. Двигатели такого типа устанавливаются на военной технике: танках, бронетранспортерах, вертолетах, катерах. Еще можно вспомнить о бензопилах, косилках, мотопомпах, генераторных подстанциях и другом мобильном оборудовании, в котором используется для работы дизельное топливо, бензин или газовая смесь.

До изобретения принципа внутреннего сгорания топливо, чаще твердое (уголь, дрова), сжигалось в отдельной камере. Для этого применялся котел, который грел воду. В качестве первоисточника движущей силы использовался пар. Такие механизмы были массивными и габаритными. Ими оборудовались локомотивы паровозов и теплоходы. Изобретение двигателя внутреннего сгорания дало возможность в разы уменьшить габариты механизмов.

Система

При работе двигателя постоянно происходит ряд цикличных процессов. Они должны быть стабильными и проходить за строго определенный промежуток времени. Это условие обеспечивает бесперебойную работу всех систем.

У дизельных двигателей топливо предварительно не подготавливается. Система подачи топлива доставляет его из бака, и оно подается под высоким давлением в цилиндры. Бензин же по пути предварительно смешивается с воздухом.

Принцип работы двигателя внутреннего сгорания таков, что система зажигания воспламеняет эту смесь, а кривошипно-шатунный механизм принимает, трансформирует и передает энергию газов на трансмиссию. Газораспределительная система выпускает из цилиндров продукты горения и выводит их за пределы транспортного средства. Попутно снижается звук выхлопа.

Система смазки обеспечивает возможность вращения подвижных узлов. Тем не менее трущиеся поверхности нагреваются. Система охлаждения следит за тем, чтобы температура не выходила за пределы допустимых значений. Хотя все процессы происходят в автоматическом режиме, за ними все же необходимо наблюдать. Это обеспечивает система управления. Она передает данные на пульт в кабину водителя.

Устройство двигателя внутреннего сгорания

Достаточно сложный механизм должен иметь корпус. В нем монтируются основные узлы и агрегаты. Дополнительное оборудование для систем, обеспечивающих нормальную его работу, размещается поблизости и монтируется на съемных креплениях.

В блоке цилиндров располагается кривошипно-шатунный механизм. Основная нагрузка от сгоревших газов топлива передается на поршень. Он шатуном соединен с коленчатым валом, который преобразует поступательное движение во вращательное.

Также в блоке размещается цилиндр. По его внутренней плоскости перемещается поршень. На нем прорезаны канавки, в которых помещаются уплотнительные кольца. Это необходимо для минимизации зазора между плоскостями и создания компрессии.

Сверху к корпусу крепится головка блока цилиндров. В ней монтируется газораспределительный механизм. Он состоит из вала с эксцентриками, коромысел и клапанов. Их поочередное открытие и закрытие обеспечивают впуск топлива внутрь цилиндра и выпуск затем отработанных продуктов горения.

К низу корпуса монтируется поддон блока цилиндров. Туда стекает масло после того, как оно смажет трущиеся соединения деталей узлов и механизмов. Внутри двигателя еще расположены каналы, по которым циркулирует охлаждающая жидкость.

Принцип работы ДВС

Суть процесса заключается в преобразовании одного вида энергии в другой. Это происходит при сжигании топлива в замкнутом пространстве цилиндра двигателя. Выделяющиеся при этом газы расширяются, и внутри рабочего пространства создается избыточное давление. Его воспринимает поршень. Он может двигаться вверх-вниз. Поршень посредством шатуна соединен с коленчатым валом. По сути это главные детали кривошипно-шатунного механизма – основного узла, отвечающего за преобразование химической энергии топлива во вращательное движение вала.

Принцип работы двигателя внутреннего сгорания основан на поочередной смене циклов. При поступательном движении поршня вниз совершается работа – на определенный угол проворачивается коленчатый вал. На одном его конце закреплен массивный маховик. Получив ускорение, он по инерции продолжает движение, и это еще проворачивает коленчатый вал. Теперь шатун толкает поршень вверх. Он занимает рабочее положение и снова готов принять на себя энергию воспламененного топлива.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором – воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Потери

Несмотря на то что ДВС отличается надежностью и стабильностью работы, его эффективность недостаточно высока, как это может показаться на первый взгляд. В математическом измерении КПД двигателя внутреннего сгорания составляет в среднем 30-45 %. Это говорит о том, что большая часть энергии сгораемого топлива расходуется вхолостую.

КПД лучших бензиновых двигателей может составлять лишь 30 %. И только массивные экономные дизели, у которых много дополнительных механизмов и систем, могут эффективно преобразовать до 45 % энергии топлива в пересчете на мощность и полезную работу.

Устройство двигателя внутреннего сгорания не может исключить потери. Часть топлива не успевает сгорать и уходит с отработанными газами. Другая статья потерь – это расход энергии на преодоление различного рода сопротивлений при трении сопряженных поверхностей деталей узлов и механизмов. И еще какая-то часть ее тратится на приведение в действие систем двигателя, обеспечивающих его нормальную и бесперебойную работу.

Комбинированный двигатель внутреннего сгорания — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 августа 2014; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 августа 2014; проверки требуют 6 правок.

Комбинированный двигатель внутреннего сгорания (комбинированный ДВС) — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой (роторно-поршневой) и лопаточной машины (турбина, компрессор), в котором в осуществлении рабочего процесса участвуют обе машины.

Схемы с механической связью поршневых и лопаточных машин[править | править код]

  • Поршневой ДВС с лопаточным нагнетателем — простейший и наиболее старый тип комбинированных ДВС. Лопаточный компрессор-нагнетатель приводится в действие через механическую передачу от коленчатого вала поршневого ДВС. В лопаточной машине происходит часть процесса сжатия заряда. Широко применялся до 60-х годов в авиации (например, на самолете Ан-2), а также на судовых высокофорсированных дизелях М400. К достоинствам следует отнести хорошую согласованность производительности нагнетателя и потребности поршневой машины в свежем заряде как в установившемся режиме работы, так и в режиме разгона. Основной недостаток — значительный отбор полезной мощности от поршневой машины, из за чего эта схема в новых типах двигателей применяется сравнительно редко.
  • Поршневой ДВС с дополнительной турбиной, отдающей мощность на коленчатый вал — в этой схеме энергия отработавших газов поршневого ДВС совершает работу в газовой турбине, которая, посредством механической передачи поступает на коленчатый вал поршневого двигателя. То есть часть процесса расширения происходит в лопаточной машине (газовой турбине). К достоинствам схемы следует отнести преобразование энергии отработавших газов в механическую, что позволяет повысить КПД агрегата. К недостаткам следует отнести сложность согласования моментно-скоростных характеристик поршневого ДВС и газовой турбины (для этих целей приходится применять гидротрансформатор). Наилучшие результаты достигаются при работе поршневого ДВС при высоких давлениях наддува (от приводного компрессора или турбокомпрессора). На практике такая схема (под торговой маркой Turbo Compound используется в двигателях большегрузных автомобилей Scania.
  • Поршневой ДВС с лопаточным нагнетателем и дополнительной турбиной, отдающей мощность на коленчатый вал, — комбинация двух вышеуказанных схем.
  • Газотурбинный ДВС c поршневым компрессором — в лопаточной машине (газовой турбине) осуществляются процессы сгорания и расширения, а поршневая машина, приводимая в движение от газовой турбины, используется для сжатия заряда. Информация о практической реализации подобной схемы отсутствует.

Схемы с газовой связью поршневых и лопаточных машин[править | править код]

  • Поршневой ДВС с турбокомпрессором — отработавшие газы поршневого ДВС совершают работу в газовой турбине, которая приводит в действие лопаточный компрессор, обеспечивающий наддув поршневого ДВС. Данная схема, называемая турбонаддувом, в настоящее время получила очень широкое распространение, так как позволяет получать высокие литровые мощности поршневых ДВС, не расходуя на наддув полезную мощность, развиваемую поршневой машиной. Однако по приемистости ДВС с турбонаддувом уступают ДВС с приводным компрессором, что обусловлено инерцией ротора турбокомпрессора и инерцией газов во впускном и выпускном трактах. Для устранения указанного недостатка на автомобилях и тепловозах применяют ДВС, снабженные несколькими турбокомпрессорами, имеющими рабочие колеса с малым моментом инерции и расположенные в непосредственной близости от впускных и выпускных клапанов. На тракторах и судах, где специальных требований к приемистости не предъявляется, наоборот, применяются турбокомпрессоры с крупногабаритными рабочими колесами, которые лучше переносят длительную работу в режимах, близких к максимальной мощности.
  • ДВС с турбиной для привода вспомогательных агрегатов — для привода вспомогательных агрегатов (электрогенераторов, систем кондиционирования воздуха) могут использоваться газовые турбины, использующие энергию отработавших газов ДВС (в том числе и оснащенных турбонаддувом). Такой способ нашел применение на речных и морских судах для привода электрических генераторов, так как привод генератора от коленчатого вала низкооборотистого судового двигателя затруднен. На речных судах типа «Заря» (выпущенных в 80-х годах) и «Восход» газовая турбина служила приводом компрессора системы кондиционирования воздуха.
  • Поршневой ДВС с наддувом в роли генератора горячего газа с отбором мощности от газовой турбины — при высоком давлении наддува двигателя внутреннего сгорания большая часть энергии, выделяемой в ходе рабочего процесса, уходит с отработавшими газами. Удельная мощность такой газовой струи весьма высока, что позволяет использовать её в газовой турбине. Рассматриваемая схема получила распространение, хотя и ограниченное, в стационарных силовых установках, там, где требуется получение большой мощности при высокой частоте вращения выходного вала — свыше 6000 об/мин. В качестве поршневого ДВС-генератора газа преимущественно используются свободно-поршневые генераторы газа. С развитием стационарных газотурбинных ДВС применение рассмотренной схемы сокращается.
  • Газотурбинный ДВС в роли компрессора воздуха, отдаваемого в поршневой двигатель — часть воздуха (как правило, большая), сжимаемого в газотурбинном ДВС, отводится в поршневую машину — пневматический двигатель или поршневой ДВС в режиме пуска сжатым воздухом. Схема нашла применение в системах пуска крупных судовых, стационарных, а также танковых двигателей. Рассматривался подобный вариант и для привода локомотивов (при этом двигатель-компрессор, установленный на паровозе вместо котла, должен был питать сжатым воздухом цилиндры паровой машины).

История появления комбинированных ДВС[править | править код]

Создание комбинированных ДВС связано с попытками устранить недостатки, присущие поршневым двигателям внутреннего сгорания, выявленные еще на ранних этапах их развития.

Одним из существенных недостатков поршневого двигателя внутреннего сгорания является то, что значительное количество энергии (тепловой и кинетической), получаемой при сжигании топливно-воздушной смеси в цилиндрах, уносится с отработавшими газами, не совершая работы в поршневой машине. Другим недостатком чисто поршневых двигателей внутреннего сгорания является невозможность получения больших значений мощности на единицу рабочего объема, что связано с ограниченным количеством воздуха (смеси), всасываемого в цилиндр в процессе впуска, а именно — давление воздуха (смеси) в цилиндре в конце такта всасывания всегда будет меньше атмосферного. Последний недостаток особенно остро проявляется в авиации, где по мере набора высоты из-за снижения атмосферного давления ухудшалось наполнение цилиндров, и, следовательно, падала мощность поршневых двигателей.

Для улучшения наполнения цилиндров авиационных ДВС, особенно на больших высотах, в 30-х годах 20-го века стали применять предварительное сжатие воздуха в лопаточном компрессоре (нагнетателе), приводимом в действие от коленчатого вала двигателя внутреннего сгорания. В такой комбинированной машине часть теплового цикла ДВС, а именно часть цикла сжатие осуществлялось в лопаточном копмрессоре. В такте впуска воздух (горючая смесь) поступал в цилиндр двигателя под избыточным давлением, что увеличивало массу заряда. Это позволило, во-первых, повысить мощность двигателей без увеличения рабочего объема (и соответственно массы двигателя) и без повышения числа оборотов (повышение числа оборотов снижает КПД воздушного винта и увеличивает механические потери в двигателе). Также решилась проблема падения мощности на больших высотах.

Однако на привод лопаточного компрессора от коленчатого вала затрачивалась часть (притом весьма существенная — порядка 10 % — 20 %) мощности двигателя, а возможность отбора возросшей при наддуве мощности отработавших газов не использовалась.

С развитием газовых турбин в 50-х, 60-х годах появилась возможность осуществлять привод лопаточного компрессора нагнетателя не от коленчатого вала, а от газовой турбины, приводимой в действие энергией отработавших газов поршневой машины. Возникли двигатели с турбонаддувом, которые в настоящее время получили весьма широкое распространение.

Другие схемы комбинированных ДВС используются для решения специфических задач и широкого применения не нашли.

Газовый двигатель — Википедия

Автомобильная газозаправочная станция в Казани

Газовый двигатель — двигатель внутреннего сгорания, использующий в качестве топлива сжиженные углеводородные газы (пропан-бутан) или природный газ (метан).

Газовый двигатель работает по тепловому циклу Отто, когда теплота подводится к рабочему телу при постоянном объёме. Отличие от бензиновых двигателей, работающих по этому циклу — более высокая степень сжатия (около 17-ти). Объясняется это тем, что используемые газы имеют более высокое октановое число, чем бензин.

В 1930-е—1940-е годы в связи с нехваткой бензина широкое распространение получили газогенераторные автомобили. На автомобиль устанавливался газогенератор, из древесных чурок производился генераторный газ. В связи с низкой калорийностью газа (состав: окись углерода и водород) эти типы двигателей ушли в прошлое.

Как правило, газовые двигатели редко выпускаются серийно, за исключением применения их для специализированных задач в науке и технике.

Для работы на транспорте используются газовые двигатели, переоборудованные из традиционных бензиновых, а с недавнего времени — после развития в Европе соответствующих технологий — и из традиционных дизельных.

По причине более высокой степени сжатия дизельные двигатели более полно раскрывают потенциал газового двигателя по сравнению с бензиновыми «собратьями». Однако, переоборудование дизелей под использование газа имеет свои особенности. По причине того, что газ не воспламеняется, подобно дизельному топливу, при увеличении давления в цилиндре на такте сжатия, необходимо дооборудование дизелей системой зажигания (подобно бензиновым вариантам), либо использование в топливо-воздушной смеси части дизельного топлива в виде т. н. «запальной дозы» (от 30 до 50 % от всего количества топлива). В остальном, применение газа на дизельных двигателях все больше приобретает популярность, и обещает в ближайшие годы получить широкое распространение, как в виде газовых двигателей в «чистом виде», так и в универсальных газодизелях.

В целом, переоборудование двигателей внутреннего сгорания на транспорте под газовый двигатель существенно экономит средства их владельцам по причине более низкой отпускной цены на такой вид топлива.

Устройство и принцип работы газобаллонного автомобиля[править | править код]

Газозаправочная аппаратура на автомобиле Карбюратор-смеситель

Автомобиль, оснащённый газобаллонным оборудованием (ГБО), использует в качестве топлива сжиженный нефтяной газ (смесь газов «пропан-бутан») или сжатый природный газ (метан).

На автомобиле сжиженная пропан-бутановая смесь находится в баллонах, установленных на раме, под полом салона автобуса или в багажнике легкового автомобиля. Сжиженный газ находится в баллоне под давлением до 16 атмосфер (баллон рассчитан на максимальное давление 25 атмосфер).

На баллоны для сжиженного газа устанавливается специальный мультиклапан, через который производится заправка баллона и отбор газа в топливную систему двигателя. Мультиклапан является важным компонентом газобаллонного оборудования, обеспечивающим его безопасное использование. Он включает в себя[1]:

  • Заправочный и расходный вентиль
  • Указатель уровня газа в баллоне. Представляет собой поплавок на рычаге, находящийся внутри баллона, и связанный с ним стрелочный индикатор либо электронную схему, передающую информацию о положении поплавка на индикатор внутри салона автомобиля
  • Обратный клапан в заправочной магистрали, предотвращающий вытекание газа через неё
  • Скоростной клапан в расходной магистрали, перекрывающий подачу газа при превышении его расходом некоторого порогового значения. Порог подобран так, чтобы клапан закрывался только при разрыве расходной магистрали (предотвращая, таким образом, сильную утечку газа), и оставался открытым при обычном уровне расхода газа.
  • Стопорный клапан, предотвращающий наполнение баллона газом более чем на 80-90 %%. Клапан находится в заправочной магистрали и закрывается при достижении указанной степени заполнения баллона. Ограничение максимального наполнения баллона необходимо для предотвращения чрезмерного повышения давления в нём в случае нагрева (например, на солнце в жаркую погоду)

Мультиклапан также может содержать в себе предохранительный клапан (стравливает газ при высоком давлении, например при перегреве баллона), пробку из легкоплавкого сплава (не допустить взрыва баллона при пожаре, сбросить газ в атмосферу, чтобы он просто сгорел) и дополнительный вентиль для отбора в двигатель паровой фазы при запуске холодного двигателя. Однако, наличие данных компонентов в мультиклапане не обязательно.

Баллоны для сжатого природного газа находятся на раме, под полом салона автобуса или на его крыше. Сжатый метан находится под давлением до 200 атмосфер. Несколько баллонов объединены в общую магистраль, имеется общий заправочный вентиль, каждый баллон также имеет собственный вентиль.

Газ из общей магистрали поступает в испаритель (подогреватель) — теплообменник, включён в систему жидкостного охлаждения, после прогрева двигателя газ подогревается (сжиженный газ испаряется) до температуры ≈75 °C. Далее газ проходит через магистральный фильтр.

Затем газ поступает в двухступенчатый газовый редуктор, где его давление снижается до рабочего. Современные газовые редукторы обычно совмещают эти два устройства (испаритель и собственно редуктор) в едином устройстве[2].

Далее, газ поступает в смеситель (или в карбюратор-смеситель или в смесительную проставку под штатным карбюратором, определяется конструкцией топливной аппаратуры). В силу того, что в смесителе происходит смешивание двух газов, их конструкция существенно проще чем конструкция бензиновых карбюраторов[3], в которых происходит смешивание двух разных фаз — жидкой (бензин) и газообразной (воздух), из-за чего в конструкции карбюратора имеются довольно сложные системы для поддержания постоянного состава смеси при разных расходах.

Двигатели разделяются на:

  • специальные (или модифицированные), предназначенные только для работы на газе, бензин используется краткосрочно при неисправности газовой аппаратуры, когда нет возможности произвести ремонт на месте;
  • универсальные, рассчитанные на длительную работу как на газе, так и на бензине.

Бензобак и топливный насос на автомобилях с газовыми двигателями сохраняются.

В холодное время года запуск двигателя, работающего на сжиженном газе производится путём отбора паровой фазы, после прогрева испарителя происходит переключение на жидкую фазу. Однако, для бензиновых двигателей, переоборудованных для работе на газе, крайне рекомендуется[4] пуск двигателя осуществлять на бензине, а на газ двигатель переключать после прогрева до температуры 40-50 °C.

Нефтяной двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Трактор Lanz Bulldog с одноцилиндровым двухтактным нефтяным двигателем. В передней части виден кожух калоризатора

Нефтяной двигатель (также керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель[1], полудизель[2]) — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе[3]. Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле[4] и т. д.

Калоризаторный двигатель изобрёл англичанин Герберт Акройд-Стюарт (англ.). В 1886 году были выпущены первые опытные образцы, а в 1891 году начался серийный выпуск на фабрике Richard Hornsby & Sons (англ.), производящей сельскохозяйственные машины. Из-за определённого сходства в конструкции (применение непосредственного впрыска топлива) и принципе работы (воспламенение при сжатии) этот двигатель стал объектом патентных споров с Рудольфом Дизелем[5].

В России двухтактные нефтяные двигатели также известны под названием болиндер (от J & CG Bolinders Mekaniska Verkstad AB — названия фирмы, поставлявшей такие двигатели)[6]

Нефтяной двигатель может быть как двухтактным, так и четырёхтактным, но большинство из них были двухтактными с картерной продувкой, что упрощало конструкцию. Основной особенностью данного типа двигателей является калильная головка (калоризатор), закрытая теплоизоляционным кожухом. Перед запуском двигателя калоризатор должен быть нагрет до высокой температуры — например, при помощи паяльной лампы. Впоследствии вместо горелки для прогрева калильной головки стала использоваться электрическая спираль.

При работе двигателя в ходе такта впуска в калильную головку через форсунку подаётся топливо (обычно в момент прохождения поршнем нижней мёртвой точки), где сразу же испаряется, однако не воспламеняется, так как калильная головка в момент срабатывания форсунки заполнена отработавшими газами и в ней недостаточно кислорода для поддержания горения топлива. Лишь незадолго до того, как поршень придёт в верхнюю мёртвую точку, в головку из цилиндра поступает богатый кислородом сжатый поршнем свежий воздух, в результате чего пары топлива воспламеняются.

Степень сжатия у подобных двигателей гораздо ниже, чем у дизельных — не более 8. К тому же топливо, в отличие от дизельного двигателя, поступает не в конце такта сжатия, а во время впуска[7], что позволяет применять топливный насос более простой конструкции, рассчитанный на сравнительно небольшое давление (обычно не более 30…40 атм).

Момент воспламенения топлива зависит от температуры калильной головки, которая в процессе работы может изменяться. Для управления опережением воспламенения мог использоваться впрыск воды.

  • Простота конструкции, надёжность, нетребовательность к уходу;
  • Возможность работы на разных видах топлива (вплоть до отработанного моторного масла) без перенастройки;
  • Двухтактные нефтяные двигатели могут работать при любом направлении вращения маховика, для реверсирования необходимо плавно снижать обороты до тех пор, пока очередная вспышка топлива не произойдёт раньше, чем поршень подойдёт достаточно близко к верхней мёртвой точке, после чего маховик останавливается и начинает вращение в обратную сторону.
  • Необходимость прогрева калильной головки до температуры 300—350 °C перед запуском, что занимало 10….15 минут при использовании открытого огня, или 1…2 минуты с электрической спиралью;
  • Низкий КПД за счёт плохой продувки калоризатора свежим воздухом и низкой степени сжатия[8];
  • Двигатель данной конструкции развивает максимальную мощность на более низких оборотах, чем традиционные дизельные двигатели, отсюда — сильные вибрации и малая удельная мощность. К тому же двигатель требует очень массивного маховика. Однако низкая скорость вращения может быть достоинством, например, при применении двигателя в качестве судового;
  • Высокая температура калильной головки поддерживается за счёт вспышек топлива в цилиндрах, поэтому данный тип двигателя не может работать длительное время без дополнительного подогрева при малой нагрузке и на холостых оборотах.
  • При длительной работе на высоких нагрузках калильная головка может перегреваться, из-за чего увеличивается угол опережения зажигания, что приводит к снижению мощности и увеличению нагрузки на детали двигателя.
Нефтяной двигатель на лесопилке

Двигатели данного типа выпускались до конца 1950-х годов и применялись в основном в сельскохозяйственной технике, судостроении (в особенности на небольших рыболовных судах) и на маломощных электростанциях. Именно таким двигателем оснащался один из первых советских тракторов — «Запорожец». Самый известный и один из наиболее успешных примеров применения такого двигателя — немецкий трактор «Ланц-Бульдог» (Lanz-Buldog), выпускавшийся с 1920-х по 1960-е годы.

Двигатель с воспламенением однородной горючей смеси от сжатия — Википедия

Двигатель с воспламенением однородной горючей смеси от сжатия (HCCI, от англ. Homogeneous charge compression ignition) — двигатель внутреннего сгорания, в котором хорошо смешанное топливо и окислитель (обычно воздух) сжимаются до точки самовоспламенения. Как и при других видах сгорания, эта экзотермическая реакция выделяет энергию, которая может быть преобразована двигателем в тепло и полезную работу.

Такой двигатель сочетает в себе характеристики обычных бензинового и дизельного двигателей. Бензиновые двигатели используют однородную смесь и искровое зажигание. Современные дизельные двигатели используют стратифицированную смесь и зажигание от сжатия.

Также как в бензиновом двигателе, в HCCI впрыск топлива происходит на такте впуска. Однако вместо использования электрической искры для зажигания небольшой части топливной смеси, HCCI увеличивает плотность и температуру смеси до тех пор, пока по всему объёму не начнётся спонтанная реакция сгорания.

Таким же образом работают современные дизельные двигатели, однако в них впрыск происходит позже, во время цикла сжатия. Сгорание происходит на границе воздуха и топлива, создавая больше выбросов, позволяя как более обедненную смесь так и высокую температуру сгорания, что приводит к более высокому КПД.

Управление HCCI двигателем требует применения микропроцессорной системы управления и понимание физики воспламенения. Такие двигатели могут достигать сравнительно низких выбросов как бензиновые и такого же высокого КПД как дизельные.

Также HCCI двигатели достигают чрезвычайно низких выбросов оксидов азота NOx даже без применения каталитического нейтрализатора. Тем не менее для соответствия экологическим стандартам требуется нейтрализация несгоревших углеводородов и угарного газа.

Последние исследования показали что использование гибридного топлива(например смеси дизтоплива и бензина)помогает лучше контролировать процессы зажигания и сгорания в HCCI двигателях.

HCCI двигатели имеют долгую историю, хотя и не получили столь широкого распространения как бензиновые и дизельные. Такие двигатели были популярны до появления электрического искрового зажигания. Одним из таких двигателей является нефтяной(калоризаторный) двигатель в котором использовалась горячая испарительная камера для смешивания топлива с воздухом. Дополнительный нагрев совместно со сжатием создает условия для сгорания. Другим примером является компрессионный карбюраторный двигатель широко используемый в авиамоделизме.

Принцип[править | править код]

Смесь воздуха и топлива воспламеняется когда температура и давление смеси достаточно высоки. Концентрация и/или температура могут быть увеличены одним из следующих способов:

  • Увеличение степени сжатия
  • Предварительный нагрев газов наддува
  • Наддув
  • Увеличение или снижение рециркуляциии выхлопных газов

Сразу после воспламенения начинается сгорание, которое протекает очень быстро. При слишком раннем самовоспламенении или выделении чрезмерно большого количества энергии, высокое давление в цилиндрах может привести к разрушению двигателя. Поэтому при работе двигателя как правило используется обедненная смесь.

Преимущества[править | править код]

  • Так как HCCI двигатель работает в режиме обедненной смеси, он может работать с высокой степенью сжатия(>15) как у дизеля и имеют до 30% более высокую топливную чем обычные бензиновые двигатели.
  • Однородная топливная смесь позволяет более полное сгорание с меньшими выбросами. Так как максимальные температуры ниже чем в двигателях с искровым зажиганием, то количество образующихся оксидов азота NOx минимально. Также такой двигатель не выбрасывает сажу.
  • Двигатель может работать как на бензине, так и на дизеле и на большинстве альтернативных видов топлива.
  • Также HCCI позволяет избежать потерь на дросселирование, что дополнительно увеличивает эффективность.

Недостатки[править | править код]

  • Сложности с холодным пуском.
  • Высокие температура и скорость нарастания давления приводят к повышенному износу.
  • Самовоспламенение трудно контролировать, в отличие от традиционных двигателей, контролируемых с помощью свечей зажигания и топливных форсунок (у дизеля).
  • HCCI двигатели имеют малых диапазон мощности ограниченный при малых нагрузках условиями воспламенения обедненной смеси и при высоких нагрузках пределом давления в цилиндрах.
  • Выбросы угарного газа и несгоревших углеводородов выше чем у обычных бензиновых двигателей из-за неполного окисления (из-за низкой температуры и высокой скорости сгорания).

Способы управления[править | править код]

Двигатель с воспламенением однородной горючей смеси от сжатия сложнее в управлении чем другие ДВС. В бензиновых двигателях используются свечи зажигания для воспламенения топливной смеси. В дизельных двигателях сгорание начинается когда топливо впрыскивается в предварительно сжатый воздух. И в том и в другом случае зажигание происходит в определенный момент времени. В HCCI двигателях же, сжимается однородная смесь топлива и воздуха и сгорание начинается в произвольный момент когда температура и давление становятся достаточными для самовоспламенения. Это означает отсутствие какого-либо определенного инициатора зажигания который бы можно было контролировать. Двигатель должен быть спроектирован таким образом, чтобы условия самовоспламенения достигались своевременно. Для стабильной работы система управления двигателем должна управлять условиями которые инициируют сгорание. Такими способами могут быть: степень сжатия, температура и давление наддува, изменение процента рециркуляции выхлопных газов.

Степень сжатия[править | править код]

Имеют значения две степени сжатия. Геометрическая степень сжатия может изменяться с помощью подвижного поршня в верхней части ГБЦ. Такая система используется в авиамодельных компрессионных карбюраторных двигателях. Эффективная степень сжатия может быть уменьшена относительно геометрической закрытием впускного клапана либо слишком рано, либо слишком поздно с помощью системы изменения фаз газораспределения(VVT). Оба способа требуют энергозатрат для достижения нужного быстродействия. Также они являются дорогостоящими, но эффективными. Влияние степени сжатия на процесс сгорания в HCCI двигателе является предметом исследований.

Температура наддува[править | править код]

Самовоспламенение в HCCI весьма чувствительно к температуре. Простейшим способом используемым для контроля температуры является использование резистивных нагревателей на впуске, однако быстродействие такого подхода недостаточно для изменения температуры в ходе одного такта. Другим способом является быстрое управление температурой(FTM), он реализуется путём смешивания горячего и холодного воздуха на впуске. Этот способ обладает необходимым быстродействием, но дорог и имеет ограничения по производительности.

Процент рециркуляции выхлопных газов[править | править код]

Выхлопные газы могут быть очень горячими если подаются обратно в цилиндры непосредственно из выпускного тракта, либо холодными если они прошли рециркуляцию через впуск как это делается в системах рециркуляции выхлопных газов(EGR). Выхлопные газы влияют на процесс сгорания в HCCI двояким образом. Они разбавляют свежий заряд, отсрочивая воспламенение и уменьшая выделение энергии и соответственно результирующую мощность. Горячие же продукты сгорания напротив увеличивают температуру в цилиндре и ускоряют начало зажигания. Управление HCCI двигателями с помощью EGR было продемонстрировано экспериментально.

Изменяемые фазы газораспределения[править | править код]

Изменяемые фазы газораспределения(VVA) расширяют рабочий диапазон HCCI двигателя позволяя более точно контролировать совокупность параметров температура-давление-время в камере сгорания. Это может быть достигнуто следующими способами:

  • Управлением эффективной степенью сжатия: VVA на впуске может регулировать момент в который закрывается клапан впуска. Если это сделать после прохождения нижней мертвой точки, степень сжатия изменится за счет изменения давления.
  • Регулируя количество возвращённых в камеру сгорания горячих выхлопных газов: VVA может регулировать это либо повторным открытием клапанов, либо временем одновременного открытия впуска и выпуска. Изменение баланса поступающих холодных и горячих выхлопных газов позволяет контролировать температуру внутри цилиндра.

Электрогидравлические и бесклапанные системы изменения фаз газораспределения хотя и дают контроль над работой двигателя чрезмерно сложны и дороги, в то время как широко распространённые механические системы могут быть настроены для достижения необходимых режимов работы двигателя.

Смесь различных видов топлива[править | править код]

Другим способом увеличения рабочего диапазона двигателя является контроль за началом самовоспламенения и тепловыделением с помощью изменения самого состава топлива. Обычно это достигается за счёт смешивания нескольких топлив "на лету" в одном двигателе. Примером являются доступные на рынке двигатели использующие природный газ и этанол совместно с бензином/дизелем. Достичь этого можно различными способами:

  • Смешивание на входе: различные виды топлива смешиваются в жидкой фазе, одно с высокой воспламеняемостью(дизель) и другое с низкой(бензин). Момент зажигания в этом случае определяется составом смеси.
  • Смешивание в камере сгорания: одно топливо может впрыскиваться во впускной тракт, а другое непосредственно в цилиндр.
Непосредственный впрыск: PCCI или PPCI Сгорание[править | править код]

Непосредственный впрыск с воспламенением от сжатия(CIDI) - отработанная технология контроля момента самовоспламенения и тепловыделения использующаяся в дизельных двигателях. Двигатель с воспламенением предварительно смешанной(частично) горючей смеси от сжатия(PPCI или PCCI) это компромисс между простыми в управлении CIDI двигателями и более экологически чистыми HCCI двигателями, в частности с малым образованием сажи. Тепловыделение контролируется созданием горючей смеси которая дольше горит и менее склонна к детонации. Это делается путём впрыскивания смеси в такой момент, чтобы к началу воспламенения в цилиндре образовывались участки с различным соотношением топлива и воздуха. Сгорание начинается в разных точках камеры сгорания в различный момент времени там самым замедляя тепловыделение. Смесь формируется таким образом чтобы избежать обогащённых участков смеси приводящих к образованию сажи. Применение EGR и дизтоплива с высокой устойчивостью к воспламенению даёт больше времени на смешивание до воспламенения снижая число обогащённых участков смеси.

Предельное давление и скорость выделения тепла[править | править код]

В обычном ДВС сгорание происходит в режиме горения. Таким образом в каждый конкретный момент времени горит лишь некоторая часть топлива. Результатом этого являются сравнительно низкие давление и выделение энергии. В HCCI двигателях же вся топливовоздушная смесь воспламеняется одновременно и сгорает за меньшее время, при этом давление и выделение энергии значительно выше. Это повышает требования к прочности деталей двигателя.

Мощность[править | править код]

В ДВС изменение(увеличение) мощности происходит простым введением большего количества топлива в цилиндры. Так как скорость выделения тепла в таких двигателях сравнительно невелика, они могут выдерживать подобное увеличение мощности. Однако, в HCCI двигателях увеличение соотношения топливо/воздух приводит к росту давления и тепловыделения. К тому же многие способы управления HCCI двигателями подразумевают предварительный нагрев топлива, что приводит к уменьшению плотности, а следовательно и массы топливовоздушной смеси в камере сгорания снижая мощность. Из-за этого регулирование мощности HCCI двигателя является сложной задачей. Одним из способов является использование смешение топлив с различной стойкостью к самовоспламенению. Это уменьшает пиковое давление и тепловыделение и позволяет снизить коэффициент избытка воздуха. Другим способом является термическая стратификация топливовоздушной смеси таким образом, чтобы в разных точках сжимаемая смесь имела различную температуру и скорость горения. Третьим способом является ограничение работы двигателя в HCCI режиме только до при частичных нагрузках, переводя его в режим обычного сгорания(дизельного/бензинового) при полной мощности.

Выбросы в окружающую среду[править | править код]

Так как HCCI работает на обеднённой смеси, максимальная температура в нём меньше чем в двигатлеях с искровым зажиганием и дизелях. Это приводит к уменьшению выбросов NOx, но также ведёт и к неполному сгоранию топлива, особенно вблизи стенок камеры сгорания. Это приводит к повышенному образованию угарного газа и повышенным выбросам углеводородов. Окислительный катализатор может улавливать подобные выбросы, т.к. в выхлопе всё ещё много кислорода.

Отличия от детонации[править | править код]

Детонация происходит когда в бензиновом двигателе с искровым зажиганием несгоревшие газы самопроизвольно воспламеняются до подачи искры. Эти газы сжимаются по мере распостранения горения и давление в камере сгорания растёт. Это вызывает ударную волну исходящую от смеси вблизи поршня и волну расширения движущуюся к поршню. Две волны отражаются от стенок камеры сгорания и взаимодействуют создавая высокоамплитудные стоячие волны, тем самым формируя простейшее термоакустическое устройство где резоананс усиливается увеличивающимся выделением тепла в процессе прохождения волны также как труба Рийке. Подобный процесс происходит и в HCCI, однако в нём воспламенение происходит при поршневом сжатии более или менее одновременно по всему объёму сжимающейся смеси. Различия в давлении между различными регионами смеси, поэтому ударные волны не формируются и не происходит детонации, но достигается быстрый рост давления необходимый для достижения точки максимальной эффективности при почти изохорной реакции.

Моделирование HCCI двигателей[править | править код]

Компьютерные модели для моделирования сгорания и тепловыделения в HCCI двигателях требуют подробных химических моделей. Это связано с тем что воспламенение больше свзяано с химической кинетикой чем с турбулентностью или искровыми процессами в обычных бензиновых и дизельных двигателях. Компьютерное моделирование показало важность определения фактической однородности смеси в цилиндрах, особенно в части её температуры. Эта гомогенность достигается за счёт турбулентности и теплопередачи от стенок цилиндра. Уровень температурной стратификации определяет скорость тепловыделения и соответственно склонность к детонации. Это ограничивает полезность допущения о рассмотрении всей смеси как единой зоны, поэтому потребовалась интеграция кода трёхмерной компьютерной гидрогазодинамики, как например KIVA CFD и кода быстрого решения функции вероятностного распределения плотности.

На 2019 год до стадии серийного производства доведены только двигатели Mazda SkyActive-G второго поколения(Skyactive-X), устанавливающиеся на Mazda 3. Двухлитровый двигатель оснащён турбонаддувом и имеет степень сжатия 18:1.

Также были продемонстрированы:

  • В 1994 году Honda представила мотоцикл EXP-2. Для имитации HCCI в двухтактном двигателе использовался выпускной клапан.
  • В 2007-2009 General Motors демонстрировала модифицированный 2.2L двигатель Ecotec. Двигатель работал в HCCI режиме при спокойной езде и переходил в обычный режим(цикл Отто, искровое зажигание) при максимальной мощности.
  • Mercedes-Benz создал прототип двигателя DiesOtto с управляемым самовоспламенением. Он был подемонстрирован в 2007 на Франкфуртском автошоу в составе прототипа F700.
  • Volkswagen разработал 2 прототипа на основе дизельного и бензинового двигателей соответственно.
  • В ноябре 2011 Hyundai представила GDCI двигатель работающие без свечей зажигания и использующий одновременно турбину и компрессор для контроля за самовоспламенением.
  • Британская компания Oxy-Gen Combustion в партнерстве с Michelin и Shell создала прототип HCCI двигателя работающего на максимальной мощности.

На данный момент большинство HCII двигателей остаются прототипами, но исследования в этой области привели к прогрессу в разработках топлива и двигателей, например:

  • PCCI/PPCI сгорание - гибрид HCCI и обычных дизельных двигателей дающий больше контроля над процессами сгорания и тепловыделения с меньшими выбросами сажи и NOx.
  • Прогресс в моделировании топлива - HCCI сгорание больше зависит от химической кинетики чем от турбулентности или искры, уменьшая сложность моделирования химии, от которой зависят окисление топлива и образование выбросов. Это привело к росту интереса и развитию химической кинетики описывающей окисление углеводородов.
  • Применение топливных смесей - всвязи с прогрессом в моделировании топлива, теперь можно производить детальное моделирование окисления углеводородов, оценивая топливные смеси бензин/дизель или этанол.

Роторный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение.

Двигатели должны давать на выходе вращательное движение главного вала. Именно этим роторные ДВС отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент (поршень) совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. В поршневых же моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. Самый первый тепловой двигатель в истории — эолипил Герона Александрийского (I в. н. э) также относится к роторным двигателям. В XIX веке, вместе с массовым появлением поршневых паровых машин, начинают создаваться и активно использоваться и роторные паровые двигатели. К ним можно отнести как паровые роторные машины с непрерывно открытыми в атмосферу камерами расширения — это паровые турбины, так и паровые машины с герметично запираемыми камерами расширения: к ним, например, можно отнести «коловратную машину» Н. Н. Тверского, которая успешно эксплуатировалась во многих экземплярах в конце XIX века в России.

С началом массового применения ДВС в первые десятилетия XX века начались и работы по попыткам создать эффективный роторный ДВС. Однако эта задача оказалась большой инженерной трудностью, и лишь в 1930-х годах была создана работоспособная дизельная турбина, которая по классификации относится к роторным ДВС с непрерывно открытой в атмосферу камерой сгорания.

Работоспособный роторный ДВС с герметично запираемой камерой сгорания удалось создать лишь в конце 1950-х годов группе исследователей из немецкой фирмы NSU, где Вальтер Фройде и Феликс Ванкель разработали схему роторно-поршневого двигателя.

В отличие от газовых турбин, которые широко и массово применяются уже более 50 лет, роторный двигатель Ванкеля и Фреде не показал очевидных преимуществ перед поршневыми ДВС, а также имел заметные недостатки, которые и сдерживают массовое применение этих моторов в промышленности. Но потенциально широкий набор возможных конструктивных решений создают широкое поле для инженерных поисков, которые уже привели к появлению таких конструкций, как роторно-лопастной двигатель Вигриянова, трёхтактный и пятитактный роторные двигатели Исаева и 2-тактный роторно-поршневой двигатель

Главное деление роторных двигателей происходит по типу работы камеры сгорания — запирается она на время герметично, или имеет постоянную связь с атмосферой. К последнему типу относятся газовые турбины, камеры охлаждения которых отделены от выхлопного сопла (от атмосферы) лишь густым «частоколом» лопастей роторной крыльчатки.

В свою очередь, роторные ДВС с герметично запираемыми камерами сгорания делятся на 7 различных конструкционных компоновок:

  1. роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главного рабочего элемента;
  2. роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента;
  3. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками-лопастями, движущимися в роторе. Частный случай — с заслонками-лопастями, отклоняющимися на шарнирах на роторе;
  4. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками, движущимися в корпусе;
  5. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов;
  6. роторные двигатели с простым вращательным движением главного рабочего элемента, без применения отдельных уплотнительных элементов и спиральной организацией формы рабочих камер;
  7. роторные двигатели с планетарным вращательным движением главного рабочего элемента и без применения отдельных уплотнительных элементов.

Роторные двигатели Фройде и Ванкеля,и 2-тактный роторно-поршневой двигатель, которые не вполне корректно с технической точки зрения называют «роторно-поршневыми», относятся к 7-й классификационной группе.

  • Н. Ханин, С. Чистозвонов. Автомобильные роторно-поршневые двигатели. — М., 1964.
  • Е. Акатов, В. Бологов и др. Судовые роторные двигатели. — Л., 1967.

Двигатель внешнего сгорания — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 июня 2019; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 июня 2019; проверки требуют 3 правки.

Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.

К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей.

Двигатели внешнего сгорания были изобретены 204 года тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырёхтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале XIX века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине XIX века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания, в конце XIX века, рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания ниже по сравнению со стоимостью производства двигателя внешнего сгорания.

Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2. Однако до недавнего времени выбросам СО2 не уделялось должного внимания.

  • «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]

Как устроен и как работает двигатель внутреннего сгорания?

Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.

ДВС что это?

Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.

ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.

Основные механизмы двигателя внутреннего сгорания

Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.

1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.

2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.

3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.

5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:

• Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

• Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.

6. Шатун служит соединительным элементом между поршнем и коленчатым валом.

7. Коленчатый вал преобразует поступательные движения поршней во вращательные.

8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.

Это интересно! Самые мощные в мире ДВС выпускает фирма Wartsila. Они предназначены для кораблей. Их мощность достигает 110 000 л.с., что равно 80 мВт.

Принцип работы двигателя внутреннего сгорания

В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.

Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.

Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.

Впуск

Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.

Сжатие

Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.

Рабочий ход

Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.

Выпуск

Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.

После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.

А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.

Достоинства и недостатки

Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.

Преимущества ДВС:

1. Возможность длительного передвижения на полном баке.

2. Небольшой вес и объём бака.

3. Автономность.

4. Универсальность.

5. Умеренная стоимость.

6. Компактные размеры.

7. Быстрый старт.

8. Возможность использования нескольких видов топлива.

Недостатки ДВС:

1. Слабый эксплуатационный КПД.

2. Сильная загрязняемость окружающей среды.

3. Обязательное наличие коробки переключения передач.

4. Отсутствие режима рекуперации энергии.

5. Большую часть времени работает с недогрузом.

6. Очень шумный.

7. Высокая скорость вращения коленчатого вала.

8. Небольшой ресурс.

Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.


Смотрите также