8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Что сделано из стали


Что сделано из стали. Всё, что изготавливают из стали, можно найти на портале. Сталь позволяет быстро и легко строить

Недра нашей земли богаты природными ресурсами. Уже много лет человек добывает их, перерабатывает и использует по своему усмотрению. Одним из самых распространенных и широко применяемых ресурсов является промышленность хорошо развита во многих странах. Не случайно, это ископаемое называют Саму нефть и продукты ее переработки используют во многих сферах и для производства большого количества товаров. Пользуясь той или иной вещью, мы даже не подозреваем, что в ее состав входят

Первоначально нефть и ее производную - керосин, использовали исключительно для освещения. Затем ее стали применять для топки паровых котлов и в виде материала для смазки. С развитием технического прогресса и появления двигателей внутреннего сгорания, нефть и продукты ее переработки нашли применение в качестве топлива. На сегодняшний день, это самое ее главное значение. Керосин, дизельное топливо, бензин это лишь малая доля того, что делают из нефти.

Большое значение переработка нефти имеет и в медицине. Возникает вопрос: что делают из нефти, применяемое в этой отрасли? Есть особые сорта нефти, которые уникальны по своему составу. Они имеют соединения, которые идентичны соединениям в витамине D, холестерине и половых гормонах. Еще с древних времен известны целебные свойства нефти. Ее использовали для лечения язв и в качестве болеутоляющего средства. Приготовленными из нефти снадобьями лечили подагру, артрит, ревматизм и различные кожные заболевания. Такая целебная нефть добывается в Азербайджане, где и сейчас применяют ее как лечебное средство.

Практически каждый из нас использовал лекарственные препараты, в состав которых входят нефтепродукты. Но не каждый знает, что делают из нефти, например, аспирин. Многие антисептики приготовлены с использованием продуктов переработки нефти. Хорошо известны свойства нефти в борьбе с микробами, поэтому она входит в состав многих популярных противомикробных препаратов. Антибиотики тоже делаются на основе спиртов и эфиров, которые были выделены из нефти. Не стоит забывать, что продукты переработки нефти используют и для производства катетеров, кислородных масок и многих других подручных материалов.

Многим ли известно, что делают из нефти и некоторые косметические средства? Практически в состав каждого крема входят все свидетельствует об огромном значении нефти в нашей жизни.

Не менее важным для жизнедеятельности человека является производство стали. Из чего делают сталь? Конечно же, из руды, которую добывают из недр земли. В специальных печах руду плавят и выделяют из нее полезные материалы и шлаки. Сталь имеет широкое применение в каждой отрасли. Перечислить все, что делают из стал

Всё, что изготавливают из стали, можно найти на портале

Когда говорят «стальной характер», имеют в виду твёрдость и решительность, надёжность и мужественность. Сплав железа с углеродом сегодня служит символом лучших качеств, которые приписывают не только вещам, но и людям. Различают два вида:

  • легированную;
  • углеродистую.

Принята также классификация по качеству. Бывают сплавы обычные и качественные а также повышенного качества и самые лучшие высококачественные.

Что производят из прочнейшего материала

Первородная сталь впервые была произведена у кельтов. Произошло это около 200 г. до нашей эры. Технология тогдашнего производства состояла в следующем: кованное железо разрезалось на тонкие полоски, которые укладывались в контейнер, в котором уже находились обожжённые кости и уголь. Контейнер вместе со всем содержимым нагревался и оставался в печи, в которой поддерживали сильный огонь, около 10-12 часов. В результате этого длительного и трудоёмкого процесса поверхность металла обогащалась углеродом.

Первыми орудиями, которые производили из стали, были ножи. Листы соединяли между собой и обрабатывали для получения определённой формы. Очень долгое время рецепт изготовления прочного сплава был засекреченным и передавался из уст в уста только посвящённым. С тех пор сталь далеко ушла в своём усовершенствовании. Изделия из стали можно встретить в каждом доме.

Большим прорывом стало изобретение в XX веке нержавейки. Этот продукт производства нашёл применение во многих сферах промышленности и в быту. Проще сказать, где его не применяют. Наиболее распространёнными и востребованными видами стальной продукции являются:

  • металлопрокат;
  • украшения;
  • инструменты;
  • посуда;
  • детали для станков и транспорта и т.д.

Высокая востребованность материала базируется на его удивительных свойствах. Это и прочность, и коррозийная стойкость, и теплопроводность, и электропроводность и т.д. Различные виды сплава могут характеризоваться различными качествами.

Где купить стальные изделия высокого качества

Как говорилось выше, существуют различные классификации сплава, одна из них основывается на его качестве. Оно должно соответствовать назначению того, что изготавливают. Большой ассортимент стальных изделий предлагает бизнес-портал All.biz. На ресурсе располагаются запчасти, инструменты, покат и многое другое. Тут http://www.kz.all.biz/ есть всё, что производится у нас и за рубежом. Поисковик настроен так, что можно найти всё необходимое. Особенно привлекают цены.

Интересные публикации:

Опубликовано: Сентябрь 15th, 2015 в рубрике: Материалы

Из чего это сделано — сталь — DENSO на DRIVE2

Железо как материал известно человечеству давно. Однако сплаву простого железа с углеродом суждено было сыграть такую роль в технической революции, которую невозможно переоценить. Сегодня речь пойдет о стали — материале, создание которого человечество превратило в точную науку.

Метеоритное железо, кричное железо болот, ранний китайский чугун — все это были прекрасные материалы, в свое время позволившие «отодвинуть» бронзу. Прочные и более легкие — железные ножи и мечи могли быстро вытеснить изделия из других металлов. Если бы не одно «но» — хрупкость. Бронзовые мечи долго удерживали свои позиции именно за счет упругости и вязкости материала, который мог выдержать настоящее фехтование и рубку. Время от времени кузнецам по железу удавалось создавать необычные изделия с высокой упругостью, однако стабильно воспроизводить результат долго не получалось.

Полный размер

Первые удачные опыты

Ответ был найден, когда кузнецы начали отливать и выковывать железные слитки, а потом переплавлять их в тиглях, смешивая со строго отмеренным количеством угля. Так появилась сталь — сплав железа с углеродом, в котором содержание последнего не превышает 2 %. В отличие от более углеродистого чугуна сталь гораздо пластичнее — она упруго деформируется, возвращаясь к своей первоначальной форме.

В древности несколько центров сталеварения производило оружие высочайшего качества. В их числе — Индия, Испания, Ближний Восток. Отдельно стоит упомянуть древнюю японскую сталь.

Сталь самураев

Нужно сказать, что сталь появилась в Японии относительно поздно — традиционная плавильная печь «татара», позволяющая достичь 1500 °С, появилась в Японии примерно в VI–VII веках, когда в Индии и Европе сталь уже давно производили. Проблемой страны восходящего солнца всегда было сырье — также произошло и со сталью. Железо выплавлялось из речного песка «сатэцу» с некоторым содержанием железных и магнетитовых руд. Песок долго и тщательно промывали, буквально вручную находя нужные крупинки, но качество руды все равно было низким.

Полный размер

В печах «татара» в течение многих часов песчаная руда пережигалась с древесным углем, результатом чего становилась губчатая сталь «тамахаганэ» с высоким содержанием углерода. Огромный слиток разбивали на мелкие части, многие из которых отсеивались по причине ненадлежащего качества.

Из остатков методом многоразовой проковки получались слитки более-менее пригодной стали, из которой впоследствии ковались изделия. Для того, чтобы компенсировать низкое качество сырья, японским кузнецам приходилось составлять сложные композиции из разных сортов стали, применять несколько этапов закалки, а затем затачивать и полировать мечи и ножи — так низкая прочность компенсировалась остротой.

Промышленность

Как бы там ни было, но вплоть до самого XIX века сталь не производилась в действительно промышленных масштабах. Причина — не было способа непрерывного литья. Только в 1855 году англичанин Генри Бессемер предложил принципиально новый способ превращения чугуна с высоким содержанием углерода в сталь. Для этого в бессемеровском конвертере расплавленный чугун продувался воздухом, при этом лишний углерод, а также другие примеси, окислялись и выводились из жидкого металла в виде шлаков.

Полный размер

Так получалась сталь. Что более важно — процесс стал быстрым, занимая не более 15 минут. Теперь можно было быстро выплавлять большие объемы стали — революция началась. В дополнение к бессемеровскому способу появилась печь французского инженера Мартена, позволявшая переплавлять вторичный лом в сталь. Объемы производства росли, из стали начали делать буквально все — от ложек до домов.

Современность

Полный размер

Сегодня сталь по-прежнему является одним из главных конструкционных материалов человечества. Современные методы получения стали (в производительных электродуговых печах) позволяют добиться не только больших объемов, но и высокого качества и точно спрогнозированных характеристик металла.

Интересно, что Япония, долгие годы отстававшая в вопросах сталеварения, сейчас является одним из мировых лидеров производства этого металла. Так, по состоянию на 2017 год Япония по выплавке стали находилась на втором месте после Китая, обгоняя такие страны, как Индия, США и Россия. Японская корпорация Nippon Steel находится в топ-3 мировых производителей стали. Также важно, что, производя почти 9 % мировой стали, Япония использует большую часть внутри страны — в производстве высококачественных изделий. Большой объем стали приходится на долю японской автомобильной промышленности.

DENSO также использует японскую сталь высочайшего качества. Особенно ответственные стальные части, например плунжеры ТНВД, проходят особую обработку — полировку и закалку, чтобы долго и надежно трудиться в напряженных условиях.

Качественная легированная сталь используется в подшипниках генераторов DENSO, работающих в условиях высоких нагрузок и температур.

Сталь до сих пор в топе

Производство этого металла в мире и не думает снижаться — в 2018 году оно достигло своего исторического максимума и составило 1 808 млн тонн. Для сравнения, в 2000 году было выплавлено всего 850 млн тонн, то есть менее чем в 2 раза. Сталь используется повсюду и, несмотря на экспансию пластика и алюминия, наши автомобили все еще во многом остаются стальными. Качественная японская сталь — залог надежности и долговечности запчастей DENSO, подобрать которые вы сможете в нашем электронном каталоге.

Как получают и из чего делают железо (сталь)?

Железо и стали на его основе используются повсеместно в промышленности и обыденной жизни человека. Однако мало кто знает, из чего делают железо, вернее, как его добывают и преобразовывают в сплав стали.

Популярное заблуждение

Для начала определимся с понятиями, поскольку люди часто путаются и не совсем понимают, что такое железо вообще. Это химический элемент и простое вещество, которое в чистом виде не встречается и не используется. А вот сталь – это сплав на основе железа. Она богата на различные химические элементы, а также содержит углерод в своем составе, который необходим для придания прочности и твердости.

Следовательно, не совсем правильно рассуждать о том, из чего делают железо, так как оно представляет собой химический элемент, который есть в природе. Человек из него делает сталь, которая в дальнейшем может использоваться для изготовления чего-либо: подшипников, кузовов автомобилей, дверей и т. д. Невозможно перечислить все предметы, которые из нее производятся. Итак, ниже мы не будем разбирать, из чего делают железо. Вместо этого поговорим о преобразовании этого элемента в сталь.

Добыча

В России и мире существует множество карьеров, где добывают железную руду. Это огромные и тяжелые камни, которые достаточно сложно достать из карьера, так как они являются частью одной большой горной породы. Непосредственно на карьерах в горную породу закладывают взрывчатку и взрывают ее, после чего огромные куски камней разлетаются в разные стороны. Затем их собирают, грузят на большие самосвалы (типа БелАЗ) и везут на перерабатывающий завод. Из этой горной породы и будет добываться железо.

Иногда, если руда находится на поверхности, то ее вовсе необязательно подрывать. Ее достаточно расколоть на куски любым другим способом, погрузить на самосвал и увезти.

Производство

Итак, теперь мы понимаем, из чего делают железо. Горная порода является сырьем для его добычи. Ее отвозят на перерабатывающее предприятие, загружают в доменную печь и нагревают до температуры 1400-1500 градусов. Эта температура должна держаться в течение определенного времени. Содержащееся в составе горной породы железо плавится и приобретает жидкую форму. Затем его остается разлить в специальные формы. Образовавшиеся шлаки при этом отделяют, а само железо получается чистым. Затем агломерат подают в бункерные чаши, где он продувается потоком воздуха и охлаждается водой.

Есть и другой способ получения железа: горную породу дробят и подают на специальный магнитный сепаратор. Так как железо имеет способность намагничиваться, то минералы остаются на сепараторе, а вся пустая порода вымывается. Конечно, чтобы железо превратить в металл и придать ему твердую форму, его необходимо легировать с помощью другого компонента – углерода. Его доля в составе очень мала, однако именно благодаря нему металл становится высокопрочным.

Стоит отметить, что в зависимости от объема добавляемого в состав углерода сталь может получаться разной. В частности, она может быть более или менее мягкой. Есть, например, специальная машиностроительная сталь, при изготовлении которой к железу добавляют всего 0,75 % углерода и марганец.

Теперь вы знаете, из чего делают железо и как его преобразовывают в сталь. Конечно, способы описаны весьма поверхностно, но суть они передают. Нужно запомнить, что из горной породы делают железо, из чего далее могут получать сталь.

Производители

На сегодняшний день в разных странах есть крупные месторождения железной руды, которые являются базой для производства мировых запасов стали. В частности, на Россию и Бразилию приходится 18 % мирового производства стали, на Австралию – 14 %, Украину – 11 %. Самыми крупными экспортерами является Индия, Бразилия, Австралия. Отметим, что цены на металл постоянно меняются. Так, в 2011 году стоимость одной тонны металла составляла 180 долларов США, а к 2016 году была зафиксирована цена в 35 долларов США за тонну.

Заключение

Теперь вы знаете, из чего состоит железо (имеется в виду металл) и как его производят. Применение этого материала распространено во всем мире, и его значение практически невозможно переоценить, так как используется он в промышленных и бытовых отраслях. К тому же экономика некоторых стран построена на базе изготовления металла и его последующего экспорта.

Мы рассмотрели, из чего состоит сплав. Железо в его составе смешивается с углеродом, и подобная смесь является основной для изготовления большинства известных металлов.

Что сделано из стали примеры. Что можно сделать из отходов черного металла — железа, стали, нержавейки, чугуна. Мастер-класс металлическая роза


Изделия из листового металла – рассматриваем их особенности + Фото, видео

В быту и в производстве, не говоря уже о строительной сфере – повсюду используются изделия из листового металла, с которыми многие из вас сталкивались не только на фото. Далее мы рассмотрим наиболее простые, но крайне необходимые варианты.

Чем может стать листовой металлопрокат?

Трудно представить окружающую нас действительность без листов стали или даже жести. Взгляните на фотографии строящегося или благоустраиваемого участка. Бочки и садовые тележки, корпуса многих электроинструментов – все это сделано из проката. Не говоря уже о различном садовом инвентаре, и всевозможных профилях, использующихся в строительстве.

К первой группе можно отнести лейки и ведра, а ко второй – профильный лист, металлочерепицу, ливневые желоба и водостоки, вентиляционные короба и дымоходы. Вот строительные изделия мы и рассмотрим далее, от форм-факторов до правильного выбора. Как правило, для перечисленных вариантов проката используют обычно тонкую сталь, оцинкованную или с полимерным покрытием. Также можно приобрести недорогие желоба, водостоки и дымоходы у жестянщиков.


По тому, из чьих рук выходят эти изделия, нетрудно понять, что изготавливаются они кустарными способами из жести. Особо можно отметить поковки из листового металла, выполненные в кузнице, горячим или холодным методом. Среди прочего это могут быть декоративные элементы для тех же желобов и дымоходов, которые не стыдно запечатлеть на фото.

Основные критерии выбора профильного листа для кровли

Приобрести профнастил сегодня можно без каких-либо сложностей на крышу любой конфигурации, особенно если речь идет о кровельной черепице в комплекте с доборными элементами. К последним относятся коньковые планки, ендовы для соединения многоскатных конструкций и всевозможные заглушки, снегозадержатели и карнизы. Гораздо сложнее подобрать по фото в каталогах профильный лист, поскольку волны могут быть разной высоты и ширины, с большим или малым шагом между ними.


Прежде всего, следует учесть, что эти волны являются своеобразными ребрами жесткости, а значит, чем они выше и чем меньше их ширина, тем выше прочность листа на изгиб. Лучше всего взять за правило обращать внимание на маркировки. Если вы увидите букву Н в начале обозначения, это будет говорить о том, что лист несущий, кровельный, с достаточно высоким уровнем жесткости. Буква С всегда относится к стеновым листам, у которых менее выраженные волны гофры.

В последнее же время все больше популярны профили с объединенной характеристикой, то есть НС, которые пригодны и как кровельные, и в качестве стеновых. Визуально, как и на фото в каталогах, их можно различить только по высоте волны и наличию (Н, НС) либо отсутствию (С) ребер жесткости. Немалую роль при выборе играет толщина листа и защитное покрытие. С одной стороны, чем тоньше профнастил, тем он дешевле, но если вы легко можете изогнуть пальцами край листа, то же самое сможет сделать и сильный порыв ветра, ударив под свес крыши.


Поэтому оптимальной считается толщина от 0,6 до 0,8 миллиметра, листы в пределах 0,9-1 миллиметра будут надежнее, но и тяжелее. Теперь о покрытиях. Если увидите маркировку АЦ – перед вами марка с алюминиево-цинковым защитным слоем, довольно ненадежным и легко деформирующимся. Также бывают цинковые, нанесенные электролизом, которые делятся на 3 класса, по количеству цинка на 1 м2: до 220, до 275 и более 275 граммов. И не забываем про устойчивые к коррозии полимерные покрытия.

Ливневые системы, или несколько слов о выборе водостоков

Кому-то нравятся легкие пластиковые желоба, но они хороши там, где нет задуваемых на крышу ветром листьев, мелких веток и прочего мусора. Гораздо надежнее в этом отношении металлические водостоки, изготавливаемые из листовой стали. Они значительно дольше противостоят возникновению царапин и не деформируются от летних высоких температур, как пластиковые, выдерживая от -40 до +120 и выше.


Особенно важна прочность зимой, когда вероятны чрезмерные снеговые нагрузки и намерзание льда, поэтому жестяные желоба устанавливать не рекомендуется, они быстро деформируются под нагрузкой. Сталь гораздо устойчивее на изгиб. Не стоит забывать, что металлопрокат бывает разный, и среди прочего листовой бывает медь, из которой тоже изготавливают ливневые системы. Они красиво смотрятся на фото, и удобны, благодаря мягкости материала, то есть, если тот же пластик гнется на излом, то деформацию меди легко исправить.


Встречаются и водосточные системы из алюминия, которые ни в коем случае не стоит сочетать с желобами и кровельным материалом из меди, поскольку под воздействием дождевой воды начинается гальваническая реакция. В результате в негодность приходят элементы из обоих металлов. В остальном алюминиевые водостоки удобны своей легкостью, прочностью и устойчивостью к коррозии. Но, как и медные, они очень дороги.

Вентиляционные короба – что нужно о них знать?

История производства и использования железа — Википедия

Выплавка железа в Средние века[1]

История производства и использования железа берёт своё начало в доисторической эпохе, скорее всего, с использования метеоритного железа. Выплавка в сыродутной печи применялась в XII веке до н. э. в Индии, Анатолии и на Кавказе. Также отмечается использование железа при выплавке и изготовлении орудий и инструментов в 1200 году до н. э. в Африке южнее Сахары[2][3]. Уже в первом тысячелетии до н. э. использовалось кованое железо (англ. Wrought iron). Об обработке железа упоминается в первой книге Библии (Быт. 4:22).

Диаграмма состояний сплавов железа и углерода

Материал, в обиходе называемый «железом», как правило, является сталью или чугуном и представляет собой сплав железа (Fe), как химического элемента, с углеродом (C). Кроме железа и углерода сплав содержит незначительные количества других химических элементов.

При концентрации углерода в сплаве менее 0,3 % получается мягкий пластичный тугоплавкий (температура плавления железа 1539 °C) сплав, за которым и закрепляется название его основного ингредиента — железа. Представление о том железе, с которым имели дело наши предки, сейчас можно получить, исследовав механические свойства гвоздя.

При концентрации углерода в сплаве от 0,3 до 2,14 % сплав называется «сталью». В первозданном виде сталь походит по своим свойствам на железо, но, в отличие от него, поддается закалке: при резком охлаждении после нагрева до определённых температур сталь приобретает большую твёрдость — замечательное достоинство, однако, почти совершенно сводимое на нет приобретённой в процессе той же закалки хрупкостью.

При концентрации углерода в сплаве свыше 2,14 % сплав называется «чугуном». Чугун — хрупкий легкоплавкий сплав, пригодный для литья, но не поддающийся обработке ковкой. Чугун насыщен графитовыми включениями, делающими его неоднородным и механически непрочным. Температура плавления чугуна варьируется от 1150 до 1300 °C.

Технологии производства и обработки железа и сплавов[править | править код]

Для производства железа исторически применялось несколько технологий, которые сложно расположить в хронологическом порядке.

Метеоритное железо[править | править код]

Использование железа началось намного раньше, чем его производство. Иногда люди находили куски серовато-чёрного металла, попавшие на Землю с метеоритами — метеоритное железо, использовали их для изготовления оружия: перековывали в кинжалы или наконечники копий. Метеоритное железо было более прочным и пластичным, чем бронза, и дольше «держало» остроту лезвия. Поскольку железные метеориты содержали железоникелевый сплав, можно предположить, что качество некоторых уникальных кинжалов могло соперничать с современным ширпотребом[4]. Однако, та же уникальность приводила к тому, что такое оружие оказывалось не на поле боя, а в сокровищнице очередного правителя.

Сыродутная печь[править | править код]

Первым устройством для получения железа из руды стала одноразовая сыродутная печь (сыродутный горн, домница). Несмотря на наличие недостатков способ получения железа с использованием такой печи долгое время оставался единственным способом получения железа из руды. На Руси появление первых домниц относят к IX веку[5].

Впервые железо научились обрабатывать народы Анатолии. Древние греки считали, что открывателями железа был народ халибов. В литературе этот народ назывался устойчивым выражением «отец железа». Слово «сталь» на греческом языке («Χάλυβς») происходит от этого этнонима.

«Железная революция» началась на рубеже I тысячелетия до нашей эры в Ассирии. Железные мечи научились изготавливать представители Гальштатской культуры. С VIII века до нашей эры сварочное железо быстро стало распространяться в Европе, в III веке до нашей эры оно вытеснило бронзу в Галлии, во II веке новой эры появилось в Германии, а в VI веке уже широко употреблялось в Скандинавии; племенами же, проживающими на территории будущей Руси — киммерийцами, а позже скифами и сарматами — железо использовалось ещё до н. э.. В Японии железный век наступил только в VII веке нашей эры.

Известный популяризатор науки Айзек Азимов так описывает историю перехода человечества из бронзового века в железный[6]:

Где-то около XV—XIV вв. до н. э. техника выплавки и науглероживания железа была разработана в кавказских предгорьях в Урарту. Эта страна находилась тогда под властью Хеттского царства, которое находилось на высшей точке своей мощи. Хеттские цари тщательно охраняли монополию на новую технику, ибо понимали её важность. Вначале получали только маленькие партии железа, и в течение нескольких столетий оно стоило порой в сорок раз дороже серебра. Но ещё до того, как выплавку можно было увеличить, а хеттам — этим воспользоваться, им пришёл конец. Хеттское царство было разрушено во время беспорядков, последовавших за движением «народов моря», и хеттская монополия на железо была нарушена. Технология выплавки железа быстро распространялась в том числе, конечно, в Ассирию, которая граничила с «железным царством» Урарту.

Торговля железом восстановила процветание Ассирии. Открылся путь для новых завоеваний.

Вторгшиеся в Грецию дорийские племена обладали железным оружием, именно поэтому они так легко покорили вооруженных бронзой ахейцев. Было железо и у «народов моря», и, когда филистимляне захватывали ханаанское побережье, в сражениях они использовали железное оружие, Но они были не настолько глупы, чтобы раскрывать секрет выплавки железа. Пока им удавалось хранить эту техническую тайну, израильтянам приходилось обороняться более примитивным оружием. Благодаря железу филистимляне не только легко закрепились на побережье, но и обложили данью ближайшие к ним племена. Около двух веков (до прихода к власти Давида в 1013 году до н. э.) им удавалось господствовать над более многочисленными израильскими племенами.

Первым шагом в зарождающейся чёрной металлургии было получение железа путём восстановления его из окиси. Болотная руда перемешивалась с древесным углём и закладывалась в печь. При высокой температуре, создаваемой горением угля, углерод начинал соединяться не только с атмосферным кислородом, но и с тем кислородом, который был связан с атомами железа.

После выгорания угля в печи оставалась так называемая «крица» — комок пористого восстановленного железа с примесью большого количества шлаков. Крицу потом снова разогревали и подвергали обработке ковкой, выколачивая шлак из железа. Полученный брусок железа (в котором всё же оставалось 2—4 % шлака) назывался «кричной болванкой». Долгое время ковка была основным процессом в технологии производства железа, причём, с приданием изделию формы она была связана в последнюю очередь. Ковкой получался сам материал.

Сварное оружие[править | править код]

Сталь производилась уже из готового железа путём насыщения углеродом последнего. При высокой температуре и недостатке кислорода углерод, не успевая окисляться, пропитывал железо. Чем больше было углерода, тем твёрже оказывалась сталь после закалки.

Как можно было заметить, ни один из перечисленных выше сплавов не обладает таким свойством, как упругость. Железный сплав может приобрести это качество, только если в нём возникает чёткая кристаллическая структура, что происходит, например, в процессе застывания из расплава. Проблема же древних металлургов заключалась в том, что расплавить железо они не могли. Для этого требуется разогреть его до 1540 °C, в то время как технологии древности позволяли достичь температур в 1000‑1300 °C. Вплоть до середины XIX века было невозможно расплавить железо и сталь с содержанием углерода менее 0,4 %, так как плавкость железных сплавов снижается по мере уменьшения концентрации углерода.

Таким образом ни железо, ни сталь сами по себе для изготовления оружия не годились. Орудия и инструменты из чистого железа выходили слишком мягкими, а из чистой стали — слишком хрупкими. Потому, чтобы изготовить, например, меч, приходилось делать «бутерброд» из двух пластин железа, между которыми закладывалась стальная пластина. При заточке мягкое железо стачивалось и появлялась стальная режущая кромка.

Такое оружие, сваренное из нескольких слоёв с разными механическими свойствами, называлось сварным. Общими недостатками этой технологии являлись излишняя массивность и недостаточная прочность изделий. Сварной меч не мог пружинить, вследствие чего неизбежно ломался или гнулся при ударе о непреодолимую преграду.

Отсутствием упругости недостатки сварного оружия не исчерпывались. В дополнение к упомянутым недостаткам, его, например, невозможно было «толком» заточить. Железу можно было придать какую угодно остроту (хотя и стачивалось оно быстро), но и тупилась мягкая режущая кромка из железа почти мгновенно. Сталь же точиться не желала — режущая кромка крошилась. Здесь налицо полная аналогия с карандашами — мягкий грифель легко сделать острым, но он сразу затупится, а твёрдый до особой остроты не доведёшь — десять раз сломается. Так что, бритвы приходилось делать из железа и затачивать заново ежедневно.

В целом же сварное оружие не превосходило остротой столовый нож. Уже одно это обстоятельство требовало делать его достаточно массивным для придания удовлетворительных рубящих свойств.

Единственной мерой, позволяющей достичь сочетания остроты и твёрдости в рамках технологии сварки, была закалка изделия уже после его заточки. Применим же этот метод становился в случае, если стальная режущая кромка приваривалась просто к железному обуху, а не заключалась в «бутерброд» из железа. Либо после заточки могли быть закалены клинки, у которых железный сердечник покрывался снаружи сталью. Недостатком такого метода было то, что заточка оказывалась возможна лишь однажды. Когда стальное лезвие повреждалось и тупилось, весь клинок приходилось перековывать.

Тем не менее именно освоение техники сварки — несмотря на все её недостатки — произвело настоящий переворот во всех сферах человеческой деятельности и привело к огромному возрастанию производительных сил. Сварные орудия были вполне функциональны и, при том, общедоступны. Только с их распространением каменные орудия оказались окончательно вытеснены, и наступил век металла.

Железные орудия решительно расширили практические возможности человека. Стало возможным, например, строить рубленные из брёвен дома — ведь железный топор валил дерево уже не в три, как медный, а в 10 раз быстрее, чем каменный. Широкое распространение получило и строительство из тёсаного камня. Он, естественно, употреблялся и в эпоху бронзы, но большой расход сравнительно мягкого и дорогого металла решительно ограничивал такие эксперименты. Значительно расширились также и возможности земледельцев.

Булатная сталь и дамаск[править | править код]

Увидеть железо жидким металлурги смогли только в XIX веке, однако ещё на заре железной металлургии — в начале I тысячелетия до нашей эры — индийские мастера сумели решить проблему получения высокоуглеродистой стали с композитной структурой. Такую сталь называли булатом, но из-за сложности изготовления и отсутствия необходимых материалов в большей части мира эта сталь так и осталась индийским секретом на долгое время.

Более технологичный путь получения упругой стали, при котором не требовались ни особо чистая руда, ни графит, ни специальные печи, был найден в Китае во II веке нашей эры. Сталь перековывали до двенадцати раз, при каждой ковке складывая заготовку вдвое, в результате чего получался отличный оружейный материал, называемый «дамаском», из которого, в частности, делались японские катаны (мечи). Количество слоёв стали рассчитывается по формуле A=2Nx{\displaystyle A=2^{N}x}, где N{\displaystyle N} — количество проковок, а x{\displaystyle x} — изначальное количество видов (слоёв) стали, сковываемой в «бутерброд». При каждой ковке количество слоёв удваивалось, а после 12 проковок количество слоёв достигало 4096, и слои становились неразличимы.

Штукофен[править | править код]

Более высокую, по сравнению с сыродутной печью, ступень в развитии чёрной металлургии представляли собой постоянные высокие печи, называемые в Европе штукофенами. Это действительно была высокая печь — с четырёхметровой трубой для усиления тяги. Мехи штукофена «качались» уже несколькими людьми, а иногда и водяным двигателем. Штукофен имел дверцы, через которые раз в сутки извлекалась крица.

Изобретены штукофены были в Индии в начале первого тысячелетия до новой эры. В начале нашей эры они попали в Китай, а в VII веке вместе с «арабскими» цифрами арабы заимствовали из Индии и эту технологию. В конце XIII века штукофены стали появляться в Германии и Чехии (а ещё до того были на юге Испании) и в течение следующего века распространились по всей Европе.

Производительность штукофена была несравненно выше, чем сыродутной печи — в день он давал до 250 кг железа, а температура в нём оказывалась достаточна для науглероживания части железа до состояния чугуна. Однако штукофенный чугун при остановке печи застывал на её дне, смешиваясь со шлаками, а очищать металл от шлаков умели тогда только ковкой, но как раз ей-то чугун и не поддавался. Его приходилось выбрасывать.

Иногда, впрочем, штукофенному чугуну пытались найти какое-то применение. Например, древние индусы отливали из грязного чугуна гробы, а турки в начале XIX века — пушечные ядра. Трудно судить, сколь хорошими были гробы, но ядра из него получались невысокого качества.

Ядра для пушек из железистых шлаков в Европе отливали ещё в конце XVI века. Из литой брусчатки делались дороги. В Нижнем Тагиле до сих пор сохранились здания с фундаментами из литых шлаковых блоков[7].

Блауофен[править | править код]

Металлурги давно заметили связь между температурой плавления и выходом продукта — чем выше была температура, тем большую часть содержащегося в руде железа удавалось восстановить. Потому рано или поздно им приходила мысль улучшить штукофен — добавить предварительный подогрев воздуха и увеличить высоту трубы. В середине XV века в Европе появились печи нового типа — блауофены, которые сразу преподнесли сталеварам неприятный сюрприз.

Более высокая температура действительно значительно повысила выход железа из руды, но она же повысила и долю железа науглероживающегося до состояния чугуна. Теперь уже не 10 %, как в штукофене, а 30 % выхода составлял чугун — «свиное железо», ни к какому делу не годное. В итоге, выигрыш часто не окупал модернизации.

Блауофенный чугун, как и штукофенный, застывал на дне печи, смешиваясь со шлаками. Он выходил несколько лучшим, так как его самого было больше, следовательно, относительное содержание шлаков выходило меньше, но продолжал оставаться малопригодным для литья. Чугун, получаемый из блауофенов, оказывался уже достаточно прочен, но оставался ещё очень неоднородным. Из него выходили только предметы простые и грубые — кувалды, наковальни, пушечные ядра.

Кроме того, если в сыродутных печах могло быть получено только железо, которое потом науглероживалось, то в штукофенах и блауофенах внешние слои крицы оказывались состоящими из стали. В блауофенных крицах стали было даже больше, чем железа. С одной стороны, это было хорошо, но вот отделить сталь от железа оказалось весьма затруднительно. Содержание углерода становилось трудно контролировать. Только долгой ковкой можно было добиться однородности его распределения.

В своё время, столкнувшись с этими затруднениями, индусы не стали двигаться дальше, а занялись тонким усовершенствованием технологии и пришли к получению булата. Но индусов в ту пору интересовало не количество, а качество продукта. Европейцы, экспериментируя с чугуном, скоро открыли передельный процесс, поднявший металлургию железа на качественно новый уровень.

Доменная печь[править | править код]

Следующим этапом в развитии металлургии стало появление доменных печей. За счёт увеличения размера, предварительного подогрева воздуха и механического дутья, в такой печи всё железо из руды превращалось в чугун, который расплавлялся и периодически выпускался наружу. Производство стало непрерывным — печь работала круглосуточно и не остывала. За день она выдавала до полутора тонн чугуна. Перегнать же чугун в железо в горнах было значительно проще, чем выколачивать его из крицы, хотя ковка все равно требовалась — но теперь уже выколачивали шлаки из железа, а не железо из шлаков.

Хотя найденные в Китае чугунные изделия восходят к V веку до нашей эры[8], самые ранние доменные печи, производящие чугун в «чушках» (слитках), который мог переплавляться в очищенный чугун в вагранках, датируются III—II веками до нашей эры. Подавляющее большинство обнаруженных ранних мест доменного производства относятся к периоду после введения государственной монополии на соль и железорудную промышленность в 117 году до нашей эры (период правления императора У-ди, 141—87 до н. э.) в эпоху династии Хань (202 год до нашей эры — 220 год нашей эры). Большинство железоделательных мест, открытых до 117 года до нашей эры, занимались лишь литьём из заготовок, выплавленных в доменных печах в других районах, отдалённых от населённых пунктов[9][10].

В Европе доменные печи впервые были применены на рубеже XV—XVI веков. На Ближнем Востоке и в Индии эта технология появилась только в XIX веке (в значительной степени, вероятно, потому, что водяной двигатель из-за характерного дефицита воды на Ближнем Востоке не употреблялся). Наличие в Европе доменных печей позволило ей обогнать в XVI веке Турцию если не по качеству металла, то по валу. Это оказало несомненное влияние на исход борьбы, особенно когда оказалось, что из чугуна можно лить пушки.

Георгий Агрикола так описывает средневековую технологию плавки[11]:

Обычай выдающихся плавильщиков, умеющих управлять четырьмя элементами (имеются в виду земля, воздух, огонь и вода — вне цитаты), таков. Они смешивают в правильных пропорциях руды, содержащие земли, и загружают их в печи. Затем льют нужное количество воды и умело управляют движением воздуха, поступающего из мехов, забрасывая руду туда, где огонь горит с наибольшей силой. Мастер равномерно обрызгивает водой внутреннее пространство печи, слегка увлажняя древесный уголь с тем, чтобы к нему приставали мелкие частицы руды; иначе эти частицы приводятся в движение силой дутья и огня и уносятся вместе с дымом.

Также Агрикола верно объясняет необходимость изменения конструкции печи в зависимости от типа руд[11]:

Так как природа руд, подлежащих плавке, бывает различной, плавильщикам приходится устраивать горн то выше, то ниже и устанавливать трубу, куда вводятся насадки мехов под меньшим или большим углом для того, чтобы дутье при надобности было более или менее сильным. Если руды нагреваются и плавятся легко, то для работы плавильщиков необходим низкий горн, а труба должна быть установлена под небольшим углом, чтобы дутье было легкое. Наоборот, если руды нагреваются и плавятся медленно, то требуется высокий горн, а труба должна быть установлена с крутым уклоном, чтобы обеспечить сильное дутье. Для руд этого рода нужна весьма горячая печь, в которой сначала расплавляются шлаки, штейны или легкоплавкие камни для того, чтобы руда не могла пригореть к поду горна и закрыть выпускное отверстие.

Передельный процесс[править | править код]

С XVI века в Европе получил распространение так называемый передельный процесс в металлургии — технология, при которой железо ещё при получении за счёт высокой температуры плавления и интенсивного науглероживания перегонялось в чугун, а уже затем, жидкий чугун, освобождаясь от лишнего углерода при отжиге в горнах, превращался в сталь.

Из передельной стали уже можно было изготавливать кривые мечи (например, сабли), чего не позволяла сделать сварная технология.

Применение угля, коксование, пудлингование, горячее дутьё[править | править код]

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением — применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался — из-за высокого содержания вредных для качества продукта примесей, в первую очередь — серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля — большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Потребление же топлива в металлургии уже тогда было огромно — домна (доменная печь) пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь. Его ввёл в употребление в XVII веке Клемент Клерк и его мастера кузнечных дел и литья.

С 1709 году в местечке Коулбрукдейл Абрахам Дарби, основатель целой династии металлургов и кузнецов, использовал кокс для получения чугуна из руды в доменной печи. Из него поначалу делали лишь кухонную утварь, которая отличалась от работы конкурентов лишь тем, что её стенки были тоньше, а вес меньше. В 1750-х годах сын Дарби (Абрахам Дарби II) построил ещё несколько домен, и к этому времени его изделия были ещё и дешевле, чем изготовленные на древесном угле. В 1778 году внук Дарби, Абрахам Дарби III, из своего литья построил в Шропшире знаменитый Железный мост, первый мост в Европе, полностью состоящий из металлических конструкций.

Для дальнейшего улучшения качества чугуна в 1784 году Генри Корт разработал процесс пудлингования. Среди многих металлургических профессий того времени, пожалуй, самой тяжелой была профессия пудлинговщика. Пудлингование было основным способом получения железа почти на протяжении всего XIX века. Это был очень тяжёлый и трудоёмкий процесс. Работа при нём шла так. На подину пламенной печи загружались чушки (слитки) чугуна; чушки расплавляли. По мере выгорания из металла углерода и других примесей температура плавления металла повышалась, и из жидкого расплава начинали «вымораживаться» кристаллы довольно чистого железа. На подине печи собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали к операции накатывания крицы при помощи железного лома. Перемешивая ломом массу металла, они старались собрать вокруг лома комок, или крицу, железа. Такой комок весил до 50—80 кг и более. Крицу вытаскивали из печи и подавали сразу под молот — для проковки с целью удаления частиц шлака и уплотнения металла[7].

Рост производства и улучшение качества английского металла к концу XVIII века позволило Великобритании полностью отказаться от импорта шведского и российского железа. Развернулось сооружение каналов, позволявших перевозить уголь и металлы.

С 1830 по 1847 год производство металла в Англии возросло более чем в 3 раза. Применение горячего дутья при плавке руды, начавшееся в 1828 году, втрое сократило расход топлива и позволило использовать в производстве низшие сорта каменного угля, С 1826 по 1846 год экспорт железа и чугуна из Великобритании увеличился в 7,5 раза[12].

Конвертерное производство и мартеновские печи[править | править код]

В 1856 году Генри Бессемер получил патент на новую технологию производства стали (бессемеровский процесс). Он изобрёл конвертер — устройство, в котором сквозь жидкий чугун, получаемый в доменных печах, продувался воздух. В конвертере происходит выгорание углерода, растворённого в железе, что позволяет получать сталь в существенно больших количествах, чем это было ранее доступно.

Альтернативой применения конвертера на протяжении XX века являлась мартеновская печь, в которой также происходило дожигание углерода. К концу XX века мартеновские печи стали очевидно устаревшей технологией и были вытеснены кислородно-конвертерным производством стали.

В середине XX века был изобретён турбодетандер, позволяющий снизить затраты на производство кислорода. Кислород стал достаточно дешёвым, чтобы получить массовое применение в сталелитейной промышленности. Продувка расплавленного чугуна кислородом существенно разогревает металл, что упрощает производство (железо не «вымораживается», а остаётся жидким), позволяет также в конвертер сбрасывать металлолом для переплавки, а также в ряде случаев улучшает качество металла за счёт отсутствия растворённого в металле азота.

Электрометаллургия[править | править код]

Способность постоянного электрического тока восстанавливать металлы была обнаружена ещё в самом начале XIX века, однако отсутствие мощных источников электроэнергии ограничивало применение этих процессов лабораторными исследованиями. Появление в начале XX века мощных электростанций позволило создать промышленные технологии электрометаллургии. Изначально такие процессы применялись для производства цветных металлов, но к середине XX века пришли и в чёрную металлургию. Широкое применение нашли процессы электрической рудовосстанавливающей плавки, при которой железная руда, смешенная с незначительным количеством углерода, подвергается воздействию мощной электрической дуги, где происходит электрическое восстановление железа на катоде и выгорание примесей на аноде. Таким способом удаётся получить чугун высокого качества, сократить расход кислорода и снизить уровень выбросов углекислого газа. Передельные электрометаллургические процессы дают возможность плавить чугун в вакууме, в среде защитного газа, в присутствии химически активных легирующих элементов, что позволяет получать легированные стали высокого качества и специальные стали (жаропрочные, радиационно стойкие). Стали, получение которых возможно только электрометаллургическими процессами называют электросталями.

Восстановление водородом[править | править код]

Доменные печи и конвертерное производство является достаточно современным, но весьма грязным для экологии процессом. При том, что большая часть железа получается в кислородно-конвертерном производстве, велики и выбросы углекислого и угарного газов в атмосферу. Модной альтернативой становится прямое восстановление железа из руды водородом. При этом образующиеся частички железа расплавляются в электрических печах, после чего добавляется углерод и получается сталь.

Кузнецы-любители[править | править код]

Первыми производство железных изделий организовали кузнецы-любители — обычные крестьяне, промышлявшие таким ремеслом в свободное от обработки земли время. Кузнец сам находил «руду» (болотная руда вблизи ржавого болота или красный песок), сам выжигал уголь, сам строил сыродутную печь и выплавлял железо, сам ковал, сам обрабатывал.

Умение мастера на данном этапе закономерно было ограничено выковыванием изделий самой простой формы. Инструментарий же его состоял из мехов, каменных молота и наковальни и точильного камня. Железные орудия производились с помощью каменных инструментов.

Если удобные для разработки залежи руды имелись поблизости, то и целая деревня могла заниматься производством железа, но такое было возможным только при наличии устойчивой возможности выгодного сбыта продукции, чего практически не могло быть в условиях натурального хозяйства.

При такой организации производства железа, никогда не удавалось за его счёт полностью покрыть все потребности в самом простом оружии и самых необходимых орудиях труда. Из камня продолжали изготавливаться топоры, из дерева — гвозди и плуги. Металлические доспехи оставались недоступными даже для вождей. Концентрация железных изделий составляла всего порядка 200 граммов на душу населения[источник не указан 1182 дня].

На таком уровне доступности железа находились в начале нашей эры наиболее отсталые племена среди бриттов, германцев и славян. В XII‑XIII веке прибалты и финны сражаясь с крестоносцами пользовались ещё каменным и костяным оружием. Все эти народы умели уже делать железо, но ещё не могли получить его в необходимом количестве.[источник не указан 1182 дня]

Профессиональные кузнецы[править | править код]

Следующим этапом развития чёрной металлургии были профессиональные кузнецы, которые всё ещё сами выплавляли металл, но на добычу железоносного песка и выжигания угля чаще уже отправляли других мужиков — в порядке натурального обмена. На этом этапе кузнец, обычно, уже имел помощника-молотобойца и как-то оборудованную кузницу.

С появлением кузнецов концентрация железных изделий возрастала в 4‑5 раз. Теперь уже каждый крестьянский двор мог быть обеспечен персональным ножом и топором. Возрастало и качество изделий. Кузнецы профессионалы, как правило, владели техникой сварки и могли вытягивать проволоку. В принципе, такой умелец мог получить и дамаск, если знал как, но производство дамаскового оружия требовало такого количества железа, что не могло ещё быть сколько-то массовым.

В XVIII-XIX веках деревенские кузнецы умудрялись даже изготовлять стволы к нарезному оружию, но в этот период они уже пользовались оборудованием, которое сделали не сами. Некоторого масштаба перенос ремесленного производства из города в деревню становился возможным на таком этапе развития города, когда стоимость даже довольно сложного оборудования оказывалась незначительной.

Средневековые же деревенские кузнецы сами делали свои орудия труда. Как умели. Поэтому рядовой мастер обычно преуспевал в изготовлении предметов простой плоской формы, но положительно затруднялся, когда требовалось изготовить трёхмерное изделие, или состыковать несколько изделий между собой — что, например, требовалось для создания надёжного шлема. Изготовить же такое сложное изделие, как спусковой механизм для арбалета, деревенскому кузнецу было непосильно — для этого ведь потребовались бы даже измерительные устройства.

Не было у кустарных кузнецов и специализации — и мечи, и иголки, и подковы делал один и тот же мастер. Более того, во все времена сельские кузнецы были заняты в первую очередь именно изготовлением наиболее необходимых односельчанам простейших производственных и бытовых орудий, но не оружия.

Впрочем, последнее отнюдь не отменяет того обстоятельства, что в примитивных культурах даже самый заурядный кузнец считался несколько сродни

Что делают из нефти и стали

Недра нашей земли богаты природными ресурсами. Уже много лет человек добывает их, перерабатывает и использует по своему усмотрению. Одним из самых распространенных и широко применяемых ресурсов является нефть. Нефтяная промышленность хорошо развита во многих странах. Не случайно, это ископаемое называют черным золотом. Саму нефть и продукты ее переработки используют во многих сферах и для производства большого количества товаров. Пользуясь той или иной вещью, мы даже не подозреваем, что в ее состав входят продукты нефтехимии.

Первоначально нефть и ее производную - керосин, использовали исключительно для освещения. Затем ее стали применять для топки паровых котлов и в виде материала для смазки. С развитием технического прогресса и появления двигателей внутреннего сгорания, нефть и продукты ее переработки нашли применение в качестве топлива. На сегодняшний день, это самое ее главное значение. Керосин, дизельное топливо, бензин это лишь малая доля того, что делают из нефти.

Большое значение переработка нефти имеет и в медицине. Возникает вопрос: что делают из нефти, применяемое в этой отрасли? Есть особые сорта нефти, которые уникальны по своему составу. Они имеют соединения, которые идентичны соединениям в витамине D, холестерине и половых гормонах. Еще с древних времен известны целебные свойства нефти. Ее использовали для лечения язв и в качестве болеутоляющего средства. Приготовленными из нефти снадобьями лечили подагру, артрит, ревматизм и различные кожные заболевания. Такая целебная нефть добывается в Азербайджане, где и сейчас применяют ее как лечебное средство.

Практически каждый из нас использовал лекарственные препараты, в состав которых входят нефтепродукты. Но не каждый знает, что делают из нефти, например, аспирин. Многие антисептики приготовлены с использованием продуктов переработки нефти. Хорошо известны свойства нефти в борьбе с микробами, поэтому она входит в состав многих популярных противомикробных препаратов. Антибиотики тоже делаются на основе спиртов и эфиров, которые были выделены из нефти. Не стоит забывать, что продукты переработки нефти используют и для производства хирургических инструментов, катетеров, кислородных масок и многих других подручных материалов.

Многим ли известно, что делают из нефти и некоторые косметические средства? Практически в состав каждого крема входят нефтепродукты. Это все свидетельствует об огромном значении нефти в нашей жизни.

Не менее важным для жизнедеятельности человека является производство стали. Из чего делают сталь? Конечно же, из руды, которую добывают из недр земли. В специальных печах руду плавят и выделяют из нее полезные материалы и шлаки. Сталь имеет широкое применение в каждой отрасли. Перечислить все, что делают из стали невозможно. Сталь используют во всех отраслях промышленности. Ее применяют в автомобилестроении, в медицине. Товары, сделанные из стали мы повсеместно используем в быту. Всевозможная посуда, садовые принадлежности и многие другие вещи мы применяем в повседневной жизни и не задумываемся об их происхождении. Из стали изготавливают прекрасные ножи. Их используют в быту и в качестве сувениров. Всем известна знаменитая булатная сталь, из которой изготавливают холодное оружие. Многие медицинские инструменты делают из стали. Практически в каждом бытовом приборе есть стальные детали.

Значение добычи нефти и производство стали велико в нашей жизни. Если задуматься, что делают из нефти и стали, то получается, что эти продукты важнейшие и крайне необходимые. Главное – это рациональное и бережное их использование, чтобы еще многие поколения могли использовать их для своих нужд.

Нержавеющая сталь | Журнал Популярная Механика

Сто лет назад мир услышал о замечательном материале, который чрезвычайно широко применяется в самых различных областях нашей жизни, — нержавеющей стали.

О технологических новинках публика часто узнает из средств массовой информации, однако такие сообщения обычно не опираются на дипломатические источники. 31 января 1915 года это правило было нарушено. Газета New York Times опубликовала небольшую заметку, озаглавленную A Non-Rusting Steel. В газетном сообщении говорилось, что компания из британского города Шеффилда выпустила на рынок новый вид стали, «которая не поддается коррозии, не тускнеет и не покрывается пятнами». Производитель утверждал, что она чрезвычайно подходит для изготовления столовых приборов, поскольку изделия из нее хорошо моются и не теряют блеска при контакте даже с самой кислой пищей. В качестве источника информации был назван американский консул в Шеффилде Джон Сэвидж. Вот так, без большого шума и с изрядным запозданием, мир узнал об изобретении нержавеющей стали.

Типы нержавейки Нержавеющие стали различаются свойствами, составом и назначением, но в целом их можно разделить на несколько основных групп по кристаллической структуре: ферритные, аустенитные, мартенситные и двухфазные (ферритно-аустенитные). Ферритные нержавеющие — это хромистые (10−30% хрома) и низкоуглеродистые (менее 0,1%) стали. Они достаточно прочные, пластичные, относительно несложно обрабатываются и при этом дешевы, но не поддаются термической обработке (закаливанию). Мартенситные нержавеющие — это хромистые (10−17% хрома) стали, содержащие до 1% углерода. Они хорошо поддаются термообработке (закаливанию и отпуску), что придает изделиям из таких сталей высокую твердость (из них делают ножи, подшипники, режущие инструменты). Мартенситные стали сложнее в обработке и из-за более низкого содержания хрома менее стойки к коррозии, чем ферритные. Аустенитные нержавеющие стали — хромоникелевые. Они содержат 16−26% хрома и 6−12% никеля, а также углерод и молибден. По коррозионной стойкости превосходят ферритные и мартенситные стали и являются немагнитными. Высокую прочность получают при нагартовке (наклепе), при термообработке (закалке) их твердость уменьшается. Двухфазные стали сочетают различные свойства ферритных и аустенитных сталей.

Предки нержавейки

Вообще-то такую сталь выпускали в Европе и США еще до шеффилдских металлургов. Обычная сталь, сплав железа и углерода, легко покрывается пленкой оксида железа — то есть ржавеет. К слову, именно это обстоятельство было одной из причин блестящего коммерческого успеха американского предпринимателя Кинга Кемпа Жиллетта, который придумал безопасную бритву. В 1903 году его фирма продала лишь 51 лезвие, в 1904-м — без малого 91 000, а к 1915 году общий объем продаж превысил 70 млн. Жиллеттовские лезвия, на которые шла нелегированная сталь из бессемеровских конвертеров, быстро ржавели и тупились и потому требовали частой замены. Любопытно, что рецепт борьбы с этой болезнью главного металла тогдашней индустрии был давно найден. В 1821 году французский геолог и горный инженер Пьер Бертье заметил, что сплавы железа с хромом обладают хорошей кислотоустойчивостью, и предложил делать из них кухонные и столовые ножи, вилки и ложки. Однако эта идея долго оставалась благим пожеланием, поскольку первые сплавы железа и хрома были очень хрупкими. Лишь в начале XX века были изобретены рецептуры сплавов железа, способные претендовать на титул нержавеющей стали. Среди их авторов был один из пионеров американского автомобилестроения Элвуд Хейнс, который собирался использовать свой сплав для изготовления металлорежущего инструмента. В 1912 году он подал заявку на соответствующий патент, который был получен лишь семью годами позже после длительных споров с Бюро патентов США.

Лезвия для станков Gillette делали из твердой углеродистой стали. Они были не слишком долговечны, поскольку легко ржавели от постоянного воздействия влаги.

Случайная находка

Но официальным родителем всем известной нержавейки стал человек, который ее вовсе не искал и создал лишь благодаря счастливому случаю. Этот жребий выпал на долю английского металлурга-самоучки Гарри Брирли, который в 1908 году возглавил небольшую лабораторию, учрежденную двумя шеффилдскими сталеплавильными компаниями. В 1913 году он проводил исследования стальных сплавов, которые предполагалось использовать для изготовления ружейных стволов. Научное металловедение пребывало тогда в зачаточном состоянии, поэтому Брирли действовал методом проб и ошибок, проверяя на прочность и жароустойчивость сплавы с разными присадками. Неудачные заготовки он попросту складывал в углу, и они там спокойно ржавели. Как-то он заметил, что отливка, извлеченная из электрической печи месяц назад, вовсе не выглядит ржавой, а блестит как новая. Этот сплав содержал 85,3% железа, 0,2% кремния, 0,44% марганца, 0,24% углерода и 12,8% хрома. Он-то и стал первым в мире образцом той стали, о которой позднее сообщила газета New York Times. Он был выплавлен в августе 1913 года.

А столовые ножи производства одной из компаний в Шеффилде, возможно, были не такими острыми, но зато хорошо сопротивлялись коррозии.

Провал и успех

Брирли заинтересовался необычной отливкой и вскоре выяснил, что она хорошо сопротивляется действию азотной кислоты. Хоть в качестве оружейной стали новый сплав успеха и не принес, Брирли понял, что этот материал найдет множество других применений. Шеффилд с XVI столетия известен изделиями из металла, такими как ножи и столовые приборы, так что Брирли решил опробовать свой сплав в этом качестве. Однако двое местных фабрикантов, которым он отправил отливки, отнеслись к его предложению скептически. Они сочли, что ножи из новой стали требуют больших трудозатрат для изготовления и закалки. Металлургические компании, в том числе и та, в которой работал Брирли, тоже не горели энтузиазмом. Понятно, что и ножовщики, и производители металла опасались, что изделия из нержавеющей стали окажутся настолько долговечными, что рынок быстро насытится и спрос на них упадет. Поэтому вплоть до лета 1914 года все попытки Брирли убедить промышленников в перспективности нового сплава ни к чему путному не привели.

Но потом ему повезло. В середине лета судьба столкнула его со школьным товарищем Эрнестом Стюартом. Стюарт, сотрудник компании R.F. Mosley & Co, выпускавшей столовые приборы, поначалу вообще не поверил в реальность существования стали, которая неподвластна ржавчине, однако согласился в виде эксперимента изготовить из нее несколько ножей для сыра. Изделия получились отменными, однако Стюарт счел эту затею неудачной, поскольку его инструменты при изготовлении этих ножей быстро тупились. Но в конце концов Стюарт и Брирли все-таки подобрали режим нагрева, при котором сталь поддавалась обработке и не становилась хрупкой после охлаждения. В сентябре Стюарт сделал небольшую партию кухонных ножей, которые он раздал знакомым для тестирования с одним условием: он попросил вернуть их в случае появления на клинках ножей пятен или ржавчины. Но ни один нож так и не вернулся в его мастерскую, и вскоре шеффилдские фабриканты признали новую сталь.

Небесное железо Довольно часто можно встретить утверждение, что метеоритное железо не ржавеет. На самом деле это чистой воды миф. Железоникелевые метеориты имеют в своем составе около 10% никеля, но не содержат хрома, поэтому не обладают коррозионной стойкостью. В этом можно убедиться, посетив минералогический раздел какого-нибудь музея естественной истории. Присмотревшись к образцам железоникелевых метеоритов (скажем, Сихотэ-Алиньского, который часто встречается в таких экспозициях), можно увидеть многочисленные следы ржавчины. А вот образец железоникелевого метеорита, купленный в магазине минералогических сувениров, скорее всего, действительно не будет ржаветь. Причина — в «предпродажной подготовке», которая заключается в покрытии образца густой защитной смазкой. Стоит смыть эту смазку при помощи растворителя — и тогда влага и кислород атмосферы возьмут реванш.

Резцы и ножи

В августе 1915 года Брирли получил на свое изобретение патент в Канаде, в сентябре 1916 года — в США, затем и в нескольких европейских странах. Строго говоря, он патентовал даже не сам сплав, а лишь изготовленные из него ножи, вилки, ложки и прочие столовые приборы. Хейнс опротестовал американский патент Брирли, ссылаясь на свой приоритет, но в конце концов стороны пришли к соглашению. Это сделало возможным учреждение в Питтсбурге совместной англо-американской корпорации The American Stainless Steel Company. Но это уже совсем другая история. Стоит отметить, что нержавеющая сталь Хейнса содержала куда больше углерода, нежели сталь Брирли, и потому имела иную кристаллическую структуру. Это и понятно: углерод обеспечивает твердость при закалке, а Хейнс стремился создать именно сплав для изготовления станочных резцов и фрез. Сейчас стали хейнсовского типа называют мартенситными, а стали, которые исторически восходят к сплаву Брирли, — ферритными (существуют и другие виды нержавеющих сталей).

Индийское чудо Железная (Кутубова) колонна — одна из главных достопримечательностей Дели. Воздвигнутая в 415 году, она за 1600 лет почти не пострадала от коррозии — лишь на поверхности виднеются небольшие пятнышки ржавчины, в то время как обычные стальные изделия подобного размера за такое время почти полностью окисляются и рассыпаются в пыль. В попытках объяснить этот феномен было выдвинуто множество гипотез: использование очень чистого или метеоритного железа, естественное азотирование поверхности, воронение, постоянная обработка маслом и даже естественное радиоактивное облучение, превратившее верхний слой в аморфное железо. Были попытки объяснить сохранность колонны и внешними факторами — в частности, очень сухим климатом. Анализы показали, что колонна состоит из 99,7% железа и не содержит хрома, то есть не является нержавеющей в современном смысле слова. Основная примесь в материале колонны — фосфор, и именно в этом, по мнению ученых, главная причина коррозионной стойкости. На поверхности образуется слой фосфатов FePO4·h4PO4·4h3O толщиной менее 0,1 мм, причем, в отличие от ржавчины, которая рассыпается и не препятствует дальнейшему окислению, этот слой образует прочную защитную пленку, предотвращающую ржавение железа.

Естественный вкус

Стюарт не только открыл путь к применению новой стали, но и нашел для нее общепринятое ныне англо-язычное название stainless steel, «сталь без пятен». Если верить стандартному объяснению, оно пришло ему в голову, когда он окунул отполированную стальную пластинку в уксус и, глядя на результат, с удивлением произнес: «This steel stains less», то есть «На этой стали остается мало пятен». Брирли называл свое детище несколько иначе — rustless steel, что соответствует русскоязычному термину «нержавеющая сталь». Кстати, заглавие заметки в New York Times возвещало о появлении именно нержавеющей (а не слаборжавеющей!) стали.

Секрет ее несложен. При достаточной концентрации хрома (не менее 10,5% и до 26% для особо агрессивных сред) на поверхности изделий из нержавейки формируется твердая прозрачная пленка оксида хрома Cr2O3, прочно сцепленная с металлом. Она образует невидимый глазу защитный слой, который не растворяется в воде и препятствует окислению железа, а следовательно, не позволяет ему ржаветь. У этой пленки есть еще одно ценнейшее качество — она самовосстанавливается в поврежденных местах, поэтому ей не страшны царапины. Столовые приборы из нержавейки приобрели огромную популярность еще и потому, что позволили избавиться от специфического привкуса, свойственного недорогой металлической посуде. Слой оксида хрома предоставляет возможность наслаждаться естественным вкусом пищи, поскольку препятствует непосредственному контакту вкусовых сосочков языка с металлом. В общем, нержавеющая сталь, которую современная индустрия выпускает во множестве разновидностей — поистине замечательное случайное изобретение.

Статья «Сталь без пятен» опубликована в журнале «Популярная механика» (№3, Март 2015).

Какой тип стали лучший для меча?

Это достаточно распространенный вопрос среди новичков, "лучший тип" зависит от типа меча и от того, в каких целях его собираются использовать...

Нужно упомянуть, что присутствует ряд более важных факторов, чем сталь, из которой сделан меч ( например, качество ковки важнее чем тип стали, из которой сделан меч - меч из хорошо закаленного куска самой дешевой нелегированной углеродистой стали гораздо лучше, чем плохо закаленный меч из стали L6.

Но давайте не будем все усложнять!

Так-что вместо этого давайте спросим "какие типы стали в основном используются для ковки мечей - и какие у них сильные и слабые стороны"(конечно, когда они закалены как надо!)?

Нержавеющая сталь

Раньше почти каждый меч был сделан из нержавеющей стали. Теперь она используется только для дешевых декоративных мечей - и не просто так!

Мечи из нержавеющей стали(или любые другие мечи в длину свыше 12") считаются слишком хрупкими для применения и ломаются очень легко (как было продемонстрировано на печально известном видео home shopping video ниже.

Как объяснить это с технической точки зрения - нержавеющая сталь "не ржавеет" из-за того что в ней содержится высокий процент хрома (более 11%), и когда клинок достигает в длину 12"(меч), связь между хромом и сталью ослабевает. Так-что место мечей из нержавеющей стали - на стенке.

Примечание: Есть исключения из этого правила. Мечи из нержавеющей стали могут быть использованы для практики бесконтактных форм.

нелегированная углеродистая сталь

Для хорошего меча ( естественно, закаленного как надо ) нелегированная углеродистая сталь подходит лучше всего! Но что это значит?

Когда углеродистая сталь используется для ковки мечей, которая обозначается несколькими цифрами : первые две - 10, потом идут цифры от 1 до 99 ( каждая цифра обозначает содержание 0.1% углерода в стали.

Например, сталь категории AISI 1045 содержат 0.45% углерода, 1060 - 0.60% и т.д.

Стали с содержанием углерода от 0.05 до 0.15% считаются низшей углеродистой сталью, с 0.16 до 0.29 - средняя сталь. Ни та ни другая для мечей не подходят, т.к сталь с содержанием углерода менее 0.40% не могут быть закаленны как следует.

Чаще всего для ковки мечей используются 3 типа углеродистой стали : 1045, 1060 и 1095. Эксперты утверждают, что идеальное содержание углерода в стали, пригодной для хорошего и прочного меча - от 0.5 до 0.7 %, однако сталь 1045,самая недорогая, также используется.

Углеродистая сталь 1045

Мечи из этого типа стали сделать легко и недорого ( как при ручной ковке, так и при прессинге и на станке ). Эта сталь может быть закалена, и требует минимум затрат стали.

Когда меч такой стали хорошо закален, он достаточно крепок. И если вы найдете недорогой меч, который помечен как "сделанный из высшей углеродистой стали", это скорее всего сталь 1045, и меч, сделанный на станке.

Углеродистая сталь 1060

Мечи из этой стали - это идеальной баланс между прочностью и гибкостью. Они так-же известны своей прочностью. Мечи COLD STEEL сделанны из стали 1060.

Мечи из 1060 стали очень популярны несмотря на то, что их сложнее ковать.

VIDEO: Cold Steel Demo

Пример того на сколько прочны мечи из 1060 стали.

1095 углеродистая сталь

Эта сталь очень жесткая, и если мечи из 1095 стали закалены не должным образом, могут возникнуть проблемы при контакте с ещё более жесткой поверхностью (например например при попадании по деревянному стенду).

Итак, сталь с высоким содержанием углерода позволяет создавать особенно острые мечи. Но в этом случае острота может стоить мечу прочности.

Конечно, это не значит, что мечи из 1095 стали - хрупкие! Но определенные преимущества в прочности у мечей, сделанных из стали с низким содержанием углерода, есть.

Мечи из 1095 стали имеют репутацию "относительно" хрупких, и ключевое слово здесь - относительно. Все зависит от того, для чего вам нужен меч.

Пружинная сталь

Существуют два нужных нам типа пружинной стали - 5160 и 9260.Так-же как и в углеродистой стали, в них содержится 0.60% углерода ( идеальный баланс между прочностью и гибкостью ). Когда такая сталь закалена как надо, после определенного воздействии ( например, искривления ) она может возвращаться в свою исходную форму.

5160 пружинная сталь

В ней содержится 7% хрома - не достаточно, чтобы получить нержавеющую сталь (где нужно минимум 13%). Выкованный из такой стали, получается очень прочным.

5160 сталь так-же использовалась знаменитым Nepalese Khurki. Он создал невероятно острый и прочный меч, с помощью которого одним ударом отрубили голову буйволу.

Опять же, все зависит от закалки. Плохо закаленный меч из стали отличного качества может оказаться бесполезным.

9260 сталь

VIDEO: Flex Test

На видео меч возвращается в исходную форму, будучи изогнутым на 90 градусов!

Мечи из 9260 стали почти в два раза прочнее мечей из 5160 стали ( как пишет efunda.com )

Тем не менее такие мечи так-же могут ломаться.

VIDEO: 9260 Sword Breaking

На видео показано, как меч ломается при плохом ударе о толстую кость (толще, чем любая человеческая кость).

Мораль - любой меч может сломаться...

Инструментальная сталь

В последнее время эта сталь достаточно популярна - из нее получаются прочные острые мечи. На рынке существуют несколько типов данной стали. Мы поговорим о двух из них : T10 и L6 Bainite

Инструментальная сталь T10

В этой стали из вольфрамового сплава содержится высокий процент углерода (1%). Обычно это сталь называют  "высокоскоростной".

T10 - очень твердая сталь (HRC60), и мечи, правильно закаленные, очень прочны. Благодаря вольфраму мечи из Т10 устойчивее к царапинам, чем другие мечи с таким-же содержанием углерода. Они так-же сравнительно тяжелее.

VIDEO: Destructive Testing of a T10 Tool Steel Sword

На видео показано, что мечи из Т10 очень прочны.

L6 BAINITE

Это так-же инструментальная сталь, ( используется для изготавления пил для разрезания гипсовой повязки ) где L - низколегированный сплав.

Когда закалены как следует, такие мечи считаются самыми крепкими. Такая репутация появилась у мечей из L6 благодаря работе Howard Clark из Bugei Trading company, который в поздних 90х производил мечи ручной работы из L6.

Такой меч трудно закалить ( из-за жесткости стали ), и так-же нужно постоянно поддерживать в хорошем состоянии, не давая ему заржаветь. Мечи из L6 - самые дорогие ( от 1000$ США)

Дамаская сталь

Катана из дамаской стали

у многих людей возникает вопрос о дамаской стали, и многие считают её лучшей для мечей.

Но даже зная это, у многих людей создается впечатление, что такая сталь прочнее других, и лезвия мечей, сделанные из такой стали, острее.

Это не правда.

Что касается японских мечей, - исторически такая технология применялась к японской железной руде (не очень хорошего качества) чтобы улучшить ее свойства. С качеством руды на сегодняшний день такие меры не обязательны.

Из какой стали лутше зделать нож

Из отечественных сталей самой распространенной для ножей считается сталь 65Х13. Буква "ха" означает хром и свидетельствует о том, что сталь нержавеющая. Из этой стали чаще всего делают медицинские скальпели и другие инструменты, поэтому часто эту сталь значительно называют "хирургической" или "медицинской". Это довольно мягкая сталь, нож из нее легко затачивается, но и быстро тупится. Единственное неоспоримое достоинство этой стали - она действительно никогда не ржавеет. Из нее делается почти весь отечественный ножевой ширпотреб, часто клеймя изделия названием города Ворсма Нижегородской области. Некоторые мастера умеют качественно работать с 65Х13, закаливая до нормальной твердости, но это скорее редкость. В целом можно сказать, что это сталь для недорогого рабочего ножа. Ближайшим аналогом отечественной 65Х13 можно считать американскую сталь марки 425mod. Сталь 65Г - это "ржавеющая" пружинно-рессорная сталь, популярная как для серийных, так и для кустарно изготовленных ножей. Из нее делают большинство так называемых "метательных ножей", и довольно редко разделочные ножи. Впрочем, если сосед по гаражу сделал нож-самоделку, то это скорее всего будет нож из рессоры, то есть из стали 65Г. Сталь сильно ржавеет, имеет неприятную особенность лопаться при нагрузках, либо быть сильно отпущенной (или недокаленой) и очень легко гнуться. Склонность к ржавлению в заводских условиях часто пытаются нейтрализовать различными полимерными покрытиями клинка или оксидированием/воронением, но любое покрытие когда-нибудь стирается и в любом случае не дает 100% защиты от коррозии. Впрочем, 65Г - это один из самых дешевых ножевых материалов, и достаточно хорошо режущий, так что ножи из этой стали будут делать еще долго. Достойные экземпляры, увы, попадаются крайне редко. Сталь 40Х12 - очень мягкая сталь. Из нее делают дешевые отечественные кухонные ножи и сувенирные клинки. Сталь плохо поддается закалке, поэтому изделия получаются очень легко гнущиеся, ножи быстро тупятся. Впрочем, на кухне такие ножи допустимы, так как не ржавеют ни при каких условиях, очень легко точатся и не требуют дополнительного ухода. Более того, если Вы привыкли работать на кухне "в европейской манере", постоянно поправляя нож мусатом, нож из 40Х13 является неплохим выбором. Иностранным аналогом этой стали считается популярная 420ая сталь. Сталь 95Х18 - неплохая отечественная нержавеющая сталь, но, к сожалению, довольно капризная в закалке и обработке. У уважаемых производителей имеет высокую твердость, при этом гибкая и достаточно прочная. Нож из этого материала не так просто хорошо заточить, как обычный кухонный, но держать остроту клинок будет довольно долго. При перекаливании нож может быть хрупким, легко ломаться и выкрашивать участки лезвия. При длительном контакте с влагой и тем более с солью может незначительно проявляться коррозия. При всем этом - одна из лучших сталей отечественного ножеделия, с которой работают как крупные производители, так и уважаемые частные мастера. Импортным аналогом считается сталь 440В. Сталь 50Х14МФ использует ряд крупных производителей. При качественной термообработке из нее получаются твердые и прочные клинки, хорошо держащие заточку. Как и для любой другой стали, недокаленные экземпляры отличаются мягкостью и быстрым износом, перекаленные - хрупкостью. Многие считают, что при должной твердости клинок будет хрупким, поэтому призывают осторожно относиться к длинным тонким клинкам из 50Х14МФ. В целом неплохая универсальная сталь, хотя изредка может коррозировать при длительном контакте с влагой, по свойствам близка к отечественной стали 65Х13. Эту сталь не следует путать с "пятидесятой" 50Х12, которая представляет собой "промежуточный вариант" между 40Х12 и 65Х13 и применяется в основном для изготовления кухонных ножей.

ШХ15,65Х13,95Х18,110Х18,Х12МФ, s30v, D2,154СМ, и ещё множество сталей, зависит от множества факторов.

Надо не марку выбирать, а как достать наилучшую заготовку для ножа. Понятно, что инструментальная сталь хорошая. Понятно, что подшипники делают из этой хорошей стали. Но они закалены. Поэтому надо большой подшипник раскалить до красна, затем остудит до потемнения и бросить в масло. Разрезать и отбить, сделав полосу металла - заготовку. Ну и т. д.

Углерода побольше для твердости и хром, никель, чтоб не ржавело. Правильно человек говорит - х12, 95(110)х18

Фильм, сделанный из стали

Только подумайте, в какую испорченную киноэпоху мы живём! Фильмы о супергероях стали настолько популярны, что некоторые всерьёз рассматривают пересъёмку «Человека-кондора». Тем не менее, до сих пор никому не удалось на достойном уровне перезапустить франшизу о «дедушке» всех героев в спандексе — Супермене. Однако, всё может измениться грядущим летом, когда на экраны кинотеатров прилетит «Человек из стали» и попытается отправить в нокаут всех своих конкурентов мощным криптонианским хуком справа.

О сюжете известно очень мало. В основном он придерживается знакомой истории: на Землю прилетает ребёнок с далёкой планеты, его капсула приземляется в Америке, и он вырастает в супергероя, судьба которого — спасать мир от злодеев, в данном случае от Генерала Зода, которого играет Майкл Шеннон, персонажа из фильма «Супермен — 2».

Из единственного тизера фильма становится понятно лишь одно — на этот раз история будет более мрачной, чем предыдущие экранизации, более реалистичной, с «очеловечиванием» главного героя.

— Мы выбрали подход, как будто в мире вовсе не существует предыдущих фильмов о Супермене, но, в то же время, с уважением относясь к мифологии, — рассказывает режиссёр Зак Снайдер в эксклюзивном интервью «Нью-Йорк Пост». — При этом существуют каноны, которые нужно соблюдать, и нарушать их я не собирался. Но мне было интересно обыграть их по-своему.

Кристофер Нолан, режиссёр последних фильмов о Бэтмене, был призван компанией «Уорнер Бразерс» в качестве продюсера и крёстного отца проекта.

— В работе с Крисом всегда присутствуют логика и конкретика, — говорит Снайдер. — С ним нельзя делать что-то просто потому, что это круто. Он требует, чтобы была история и за ней стоял персонаж, впрочем, я и сам поклонник такого стиля.

Генри Кавилл, который стал первым британским исполнителем этой роли, говорит, что он также является поклонником более приземлённого подхода.

— Меня сразу же подкупила идея реализма, — сказал Кавилл в эксклюзивном интервью «Нью-Йорк Пост» на съёмках фильма. — Все поклонники Супермена хорошо знают, что это за герой, и они в любом случае будут пытаться ассоциировать себя с ним. Но тем людям, которым он не знаком, всё же будет необходимо найти с ним что-то общее, чтобы понять его, и именно это требует присутствия в фильме сегодняшних реалий, конечно, в смысле научного подхода в противовес мифологии, которая также прилагается.

Одно из самых очевидных изменений по сравнению с предыдущими экранизациями произошло в костюме Супермена. Создатели отказались от пресловутого спандекса в пользу более металлической фактуры, которая создаёт впечатление кольчужной брони.

— Костюм имел для меня огромное значение, и мы очень долго плясали вокруг него, пытаясь найти идеальное решение, — говорит Снайдер. — Я, как одержимый, до последнего пытался сохранить на нём красные трусы, хотя все меня хором убеждали, что делать этого не стоит. Я просмотрел более полутора тысяч эскизов с трусами и сдался.

В финальной версии костюма красных трусов нет, он представляет собой полностью синий комбинезон, дополненный красными сапогами и красным плащом.

— Теперь костюм выглядит более современно, но всё же в нём сильно заметна связь с оригинальным костюмом, — говорит Снайдер.

— Когда попадаешь в такой проект, как этот, и слышишь идеи о модернизации и о том, что эту историю нужно приблизить к современному миру, то всё, что тебе остаётся — это надеяться, что новый костюм будет выглядеть круто и сильно отличаться от всего того, что ты видел раньше, — говорит Кавилл о костюме, надевание которого занимало у него от 15 до 25 минут.

Чтобы соответствовать костюму, Кэвиллу приходилось усиленно тренироваться по два с половиной часа ежедневно и поглощать по 5000 калорий в день.

— Мне устроили настоящий кошмар спортсмена, выступающего за национальную сборную, — рассказывает Кавилл. — Например, одним из упражнений было 100 приседаний со штангой. А еще были тяжелые силовые тренировки по системе «kettle-bell», это была адская работа.

Если «Человек из стали» окупится, то оно того стоило. На фильм уже возложили огромные ожидания.

— Я однажды слышал, что эмблема Супермена — второй или третий по узнаваемости символ на планете после христианского креста, — говорит Снайдер. — Это сумасшедшая ответственность.

В первую очередь, «Человек из стали» должен перезапустить франшизу, которую благополучно провалил в 2006 году Брайан Сингер с фильмом «Возвращение Супермена». Кэвилл подтверждает, что он подписан на три фильма. Снайдер лишь намекает, что его ждет дальнейшая работа в качестве режиссёра.

— Мы взялись за фильм как за единичный проект, — говорит он. — Однако существует множество механизмов, которые работают по законам мира коммерции и мира мифологии, которые мы запустили, чтобы помочь нашему герою найти приключения. Подождём — увидим.

Пожалуй, самое интересное, что несёт с собой появление «Человека из стали» — это то, что он может стать отправной точкой для фильмов по вселенной комиксов DC, точно так же, как в 2008 году «Железный человек» открыл дорогу в кино героям комиксов вселенной Marvel.

«Уорнер Бразерс» уже заявил о съёмках фильма «Лига справедливости» о суперкоманде таких героев, как Супермен, Бэтмен, Вандер-Вумен и других, который должен выйти на экраны в 2015 году. Поскольку трилогия о Бэтмене режиссёра Кристофера Нолана уже завершена, а неудачный «Зелёный Фонарь» сложно принимать во внимание, то именно «Человек из стали» должен стать первым фильмом из серии экранизаций супергеройских историй этой новой вселенной.

— Я не знаю, как будет сниматься «Лига справедливости», правда, не знаю, — говорит Снайдер. — Но «Человек из стали» с Суперменом уже существует. И я не понимаю, как можно двигаться дальше в этом направлении, не учитывая этот факт.

На вопрос о том, обсуждал ли он со студией проблему интеграции «Человека из стали» в общую вселенную супергероев DC, Снайдер отвечает уклончиво.

— Что вы хотите услышать? — интересуется он. — Я не могу ничего говорить об этом, потому что это будет большим спойлером. Я лишь скажу, что они доверили мне держать их в курсе.

Мы также слышали о том, что, возможно, в «Человеке из стали», в самом конце, после титров, появится еще один борец со злом в суперкостюме — это должно проложить дорожку к другому супергеройскому фильму. Вселенная перезапущена.

В данный же момент Кэвилл сосредоточен на этом фильме и старается оправдать ожидания.

— Пару раз случались такие моменты, когда люди пытались объяснить нам всю эту около-Суперменскую кухню... и тогда я впервые осознал всю массовость этого явления, — говорит Кэвилл. — Ты просто вынужден это игнорировать и не позволять им давить на себя, иначе есть риск потратить все силы на борьбу с этим давлением, вместо того, чтобы делать действительно важное дело — достойно сыграть персонажа.

Справился ли он со своей задачей — увидим 14 июня.


Смотрите также