8 (495) 988-61-60

Без выходных
Пн-Вск с 9-00 до 21-00

Адаптивная подвеска что это


Активная подвеска — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 июня 2018; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 июня 2018; проверки требуют 3 правки. Toyota Land Cruiser Prado 4-ого поколения (J150) имеет систему KDSS — одну из разновидностей гидравлической активной подвески Audi Q7 имеет систему ACC — пневматическую активную подвеску

Активная или адаптивная подвеска — активная система подрессоривания автомобиля, которая управляет вертикальным перемещением колёс относительно кузова. Система позволяет уменьшить до минимума крен кузова в стационарных (равномерное, прямолинейное движение) и нестационарных (разгон, торможение, поворот, буксировка прицепа) режимах движения автомобиля, а также минимизировать заметность неровностей на дороге для водителя и пассажиров.

Эта технология позволяет производителям повысить уровень комфорта в автомобиле для различных типов дорог без ущерба для управляемости.

Система работает на основе множества датчиков. Разные производители автомобилей используют различный набор датчиков. Например, компания Фольксваген в своей системе ACC Adaptive Chassis Control использует три датчика относительного перемещения кузова (два спереди и один сзади) и три датчика ускорения кузова (так же, два спереди и один сзади). Исходя из данных с датчиков блок управления подвеской задаёт различные уровни демпфирования. В качестве исполнительного механизма вместо привычных масляных амортизаторов используется пневмоэлементы, которые путём изменения давления воздуха адаптируют подвеску к различным дорожным условиям.

Адаптивные системы управления АТС (рус.) на сайте журнала Автомобильная промышленность

принцип работы, достоинства и недостатки

Подвеска является одной из основных частей автомобиля. Качественная и правильно отрегулированная, она прибавит комфорта в поездках, сделает автомобиль более послушным в управлении, уменьшит вредные для остальных частей машины вибрации и толчки. Существует много различных типов подвесок, среди которых явно выделяется адаптивная подвеска либо как её называют — активная.

Подвеска авто

Что собой представляет адаптивная подвеска?

Активной она названа потому, что амортизаторы способы подстраиваться под нужный темп езды в любой ситуации, или даже на ровной дороге. Она представляет собой систему различных датчиков и активных элементов, отвечает за смягчение ударов от неровностей дороги и движения кузова автомобиля относительно колёс (торможение и разгон), выполняет общую функцию подрессоривания автомобиля. Производители комплектуют свои подвески разными датчиками:

  • Высоты дорожного просвета;
  • Искажения дорожного полотна;
  • Скорости автомобиля;
  • Напряжения в электронных модулях;
  • Степени демпфирования и другие.

Адаптивная подвеска может иметь гидравлический или пневматический принцип работы. Гидравлический тип более распространён на медленных и больших автомобилях, поскольку режим его работы относится к умеренному и такая система не в состоянии за доли секунды выставить нужную жёсткость.

Другое дело — гидравлика. Здесь уже присутствуют поршни, цилиндры, жидкость, система клапанов и прочего, что позволяет ей выдержать большие нагрузки, занимать меньше места, а также стать более производительной.

Типы активной подвески

Адаптивная подвеска

Адаптивная подвеска, в зависимости от способа регулирования, степени демпфирования делится на подвеску с системой электромагнитных клапанов и с магнитно-реологической жидкостью внутри. Оба варианта применяются по сей день, но более распространён именно первый. Это обусловлено некоторыми причинами:

  1. Дешевизна;
  2. Более проста при обслуживании;
  3. Простая настройка;
  4. Требуется менее пристальный уход.

Принцип работы заключается в следующем. Разнообразные датчики воспринимают всю необходимую информацию, после чего передают данные в электронный блок управления. Там информация обрабатывается, из чего компьютером делается вывод об определении нужной жёсткости амортизаторов в данной ситуации. Во время подачи большого тока на электромагнитные клапаны, диаметр из проходимого сечения уменьшается, что, в свою очередь, повышает жёсткость подвески.

Подвеска со специальной жидкостью работает несколько иначе. Информацию, собранную датчиками, обрабатывает электронный блок управления, затем принимается решение для отдачи команды подачи напряжения, вот только уже не напрямую в электромагнитные клапаны, а в электромагнитное реле, встраиваемое в поршень. В результате образуется магнитное поле, которое буквально управляет магнитно-реологической жидкостью. Эта жидкость содержит в себе металлические частицы, которые под воздействием магнитных сил выстраиваются вдоль поля, соответственно — консистенция становится вязкая, а давление выше — уровень степени демпфирования возрастёт.

Подавляющее множество автомобильных компаний все чаще используют в своих конструкциях активную подвеску, причём каждый старается назвать разновидность стандартной технологии по-разному.

Комфорт

Несомненно, комфорт, полученный во время езды с адаптивной подвеской более высок в сравнении с другими типами подвесок. С такой системой вы будете полностью контролировать автомобиль даже в самых непредсказуемых ситуациях, к примеру, на сильном гололёде или бездорожье.

Мелкие или даже средние выбоины станут просто незаметными, а на поворотах крен кузова снизится до минимума, что обеспечит практически полностью горизонтальное положение авто даже при быстром повороте.

При всём этом даже не придётся следить за уровнем её регулировки и настройки, поскольку, блок управления сам решает, какую жёсткость применить для того или иного амортизатора.

Регулировка

Регулировка подвески может проходить несколькими способами как в ручном, так и автоматическом режиме. Обычно на панели управления автомобиля имеются соответствующие центры управления, которые позволяют выбрать несколько режимов езды, к примеру: спорт, город, бездорожье и так далее, в этом случае БУ сделает все сам, без вмешательства пользователя. Иногда возможно создание новых, и редактирование уже существующих режимов. Есть возможность отрегулировать подвеску механическим путём.

✅ Адаптивная подвеска DCC — Volkswagen Tiguan, 2.0 л., 2018 года на DRIVE2

DCC (Adaptive Chassis Control) — активная подвеска, в которой степень демпфирования амортизаторов изменяется в зависимости от состояния дорожного покрытия, параметров движения и запросов водителя. Под степенью демпфирования понимается быстрота затухания колебаний, которая зависит от сопротивления амортизаторов и величины подрессоренных масс.
Подробное описание здесь — 406 — Адаптивная подвеска DCC.pdf

На моем предыдущем авто Opel Insignia была такая. Поездив на Тигуане почти год, решил, что оно мне тоже надо 😀.

И вот, продав почку на Авито получив премию на работе, договорился об установке в начале декабря с ребятам из VagArchitects. К слову, они уже ставили DCC на Kodiaq, но его нет на Драйве…

На заказ деталей и их проверку ушел почти месяц. На установку — 5 дней.
Чтобы иметь представление о процессе, вот пример установки на Тигуан первого поколения — Установка адаптивной подвески DCC
Или вот — Установка адаптивной подвески DCC

Сделано:
✔ установка электронно-управляемых амортизаторов
✔ установка датчиков ускорения и дорожного просвета
✔ установка блока управления DCC
✔ изготовление внутренней проводки и прокладка внутренней и внешней проводки до блока управления
✔ кодировки и базовая установка DCC
✔ кодировка DLA (т.к. теперь он использует данные DCC)
✔ регулировка сход-развала
✔ калибровка радара ACC
✔ калибровка камеры ассистентов
✔ регулировка фар

Пружины в передней подвеске DCC такие же, как обычной — PR-G01+L05. Т.е. их можно не менять.
Задние — другие, какие — не уточнял.
Но я оставил "униженные" пружины H&R, т.к. они совместимы с DCC. Дорожный просвет не изменился.

Так же попросил снять защиту компонентов с нештатной Discover Pro (хотя смысла особого не было) и поменять в подвеске опорные подшипники, резиновые прокладки, отбойники (все-равно туда лезть…)

Полный размер

Полный размер

Полный размер

В итоге имеем: 😀

Полный размер

Полный размер

Ощущения:
Покатался в различных режимах:
Обычный режим — почти сток, но меньше паразитных колебаний и кренов в поворотах.
Комфортный режим — плавность хода, неровности дороги сглаживаются подвеской. Есть участок не очень хорошей дороги в заплатках, по которой я обычно ездил 70-80 км/ч. Сейчас же непроизвольно увеличиваю скорость до 90-100. Трамвайные пути переезжаю как на пневме 😃. Хотя этот режим совсем не аналог пневмы, конечно…
Спортивный режим — минимум кренов, машина повторяет профиль дороги. Подвеска отрабатывает как на спортивном авто.

Несколько нюансов:
ℹ при проезде искусственных неровностей во всех режимах задняя подвеска отрабатывает немного жестче передней. Видимо из-за того, что там стоят прогрессивные пружины, а спереди — обычные. Но я менять пружины H&R не планирую. Мне нравится поведение авто с ними, низкий центр масс, устойчивость на дороге.
ℹ по словам ребят из VagArchitects Kodiaq с DCC и штатными пружинами еще мягче…

По ценам:
Полного перечня деталей у меня нет, но их легко пробить по каталогам.
Вот "грубо" накидал по ценам exist. Это не считая пружин, проводки, кронштейнов, разъемов, пинов…
Можно сэкономить, если брать не в exist и брать некоторые детали б/у (как в моем случае), например блок управления DCC, датчики.

Вот такие "пироги"… Если режим эксплуатации авто больше трасса, чем город (как у меня), то смысл установки DCC есть. Если же просто хочется подвеску по-мягче и езда в основном по городу, то все-таки дешевле и проще поставить аммо и пружины помягче…🚗

Я же установкой доволен на все 100% 😃.
Парням из VagArchitects респект 👍.

Адаптивная подвеска принцип работы элементы плюсы и минусыПодвеска автомобиля

Подвеска есть в любой без исключения машине. Это может быть простейшее устройство на основе рессор и пружин или продвинутая адаптивная подвеска построенная на гидравлических или пневматических элементах. Все они выполняют одну и ту же функцию – обеспечивают комфорт, управляемость и безопасность в поведении автомобиля на дороге.

Активной подвеска называется из-за ее возможности изменять свои характеристики под разные условия движения. Достигается это применением следующих компонентов:

  • специальных демпфирующих элементов;
  • регулируемого стабилизатора поперечной устойчивости;
  • системы датчиков, отслеживающих ускорение, угол крена, дорожный просвет;
  • электронного блока управления, анализирующего полученные данные.

    В основе амортизирующего элемента может быть использован пневмоэлемент или специальный гидравлический амортизатор, способный менять свою жесткость. Оба варианта получили широкое распространение на различных типах автомобилей.

В основе конструкции пневмоподвески лежат пневматические упругие элементы, установленные под каждым колесом. В действие их приводит компрессор, который изменяет в них давление в зависимости от выбранного режима движения. Такой тип подвески может выдерживать значительные нагрузки, приподнимать кузов автомобиля для увеличения клиренса на бездорожье или, напротив, опускаться с ростом скорости.

По комфортабельности такому типу подвески нет равных. Они нашли широкое применение в грузовых автомобилях, внедорожниках концерна Volkwagen, Land Rover, Mersedes-benz и машинах представительского класса.

Жидкостная адаптивная подвеска различается по принципу регулировки жесткости. Это может быть осуществлено с помощью электромагнитного клапана или применением специальной магнитно-реологической жидкости.

В первом случае настройка амортизатора осуществляется за счет изменения силы тока через специальный клапан, устанавливаемый внутри амортизаторной стойки. Подаваемый электрический ток изменяет проходное сечение между контурами амортизатора, увеличивая или уменьшая его жесткость. Регулировка может осуществляться как для каждого клапана отдельно, так и синхронно.

Такая схема популярна у автомобилей Toyota – Adaptive Variable Suspension

Opel – Continuous Damping Control



Mersedes-Benz – Adaptive Damping System

Марка Citroen представила свою фирменную подвеску Hydractive поколения 3+, с которой когда-то и началось использование адаптивных подвесок на легковых автомобилях. Она надежна, проста в использовании и относительно дешева.

Подвеска с магнитно-реологической жидкостью работает несколько иначе. После обработки всех сигналов с датчиков на кузове, компьютер передает сигнал на специальное реле, встроенное в поршень амортизатора. Магнитное поле начинает действовать на мельчайшие металлические частицы, находящиеся в жидкости, увеличивая ее вязкость. Чем выше электромагнитное сопротивление жидкости, тем выше будет жесткость всей подвески.

В сочетании с регулируемыми пружинами и стабилизатором такая схема является наиболее эффективной. Из-за своей сложности этот тип не получил широкого распространения на автомобилях, хотя по своим характеристикам и превосходит все остальные типы активных подвесок.

Используется фирмами BMW – Electronic Damper Control и Adaptive Drive, Audi, Cadillac.

Плюсы адаптивной подвески:

  • Высокий уровень комфорта независимо от типа дорожного покрытия, особенно это применимо к пневмоподвескам. Зажимая амортизатор и пружину на хорошей дороге и ослабляя на ухабах, можно добиться стабильного поведения машины на любом типе покрытия. При этом кузов автомобиля будет находиться всегда в одном положении, независимо от загрузки.
  • Хорошая управляемость на больших скоростях и в крутых виражах. Отсутствие раскачки на волнах. Как правило, переключение в спортивный режим влечет за собой изменение не только жесткости амортизаторов, но и остроты рулевого управления, отклика на педаль газа. Позволяет раскрыть спортивный потенциал автомобиля на гоночном треке или иной специально подготовленной трассе.
  • Уменьшение нагрузки на несущие элементы кузова, снижение износа шин, уменьшение тормозного пути. Все это обеспечивается правильным распределением нагрузки по осям при разгоне и торможении.
  • Адаптация к стилю каждого водителя, возможность самостоятельного выбора режима подвески, точная настройка для конкретных дорожных условий.

Видео: работа адаптивной подвески на примере Skoda Superb

Минусы адаптивной подвески:

  • Сложность устройства и цена. Понятно, что столь продвинутая система не обходится без большого количества датчиков, компьютера для обработки данных о скорости, крене автомобиля и самих амортизирующих устройств в подвеске. Сложность электронной начинки может приводить к сбоям в работе, особенно в сложных климатических условиях. Как правило, такой тип подвески применяется в топовых моделях всех автопроизводителей и предназначен искушенному водителю.
  • Сложность в дальнейшей эксплуатации подразумевает более квалифицированное сервисное обслуживание по сравнению с традиционными амортизаторами. В большинстве случаев, для правильной настройки потребуется специальный сканер и другое оборудование.
  • Надежность адаптивной подвески ниже, чем у традиционной. Это может иметь решающее значение при выборе автомобиля для удаленных районов и бездорожья.
  • Потери в стоимости при продаже автомобиля – с этим приходится сталкиваться после нескольких лет эксплуатации, когда машина, оснащенная современной активной подвеской, может при продаже потерять больше, чем с простой механической. Опять же все зависит от качества проводимого сервисного обслуживания.

Таким образом, адаптивная подвеска стала настоящим прорывом в области автомобилестроения. Автопроизводители, комбинируя их различные варианты, стали создавать машины с уникальными настройками.

Это привело к росту безопасности и комфорта, позволило добиться лучшей управляемости и устойчивости, сделать вождение автомобиля интересным и захватывающим .

назад Что такое однорычажная подвеска автомобиля Вперед Именитая подвеска МакФерсон — надежна ли?

Похожие статьи

Адаптивная подвеска - что это?

Адаптивной или активной подвеску автомобиля называют из-за того, что ее элементами управляет бортовой компьютер, меняя, в зависимости от качества дорожного покрытия, жесткость амортизаторов. Принцип работы адаптивной подвески состоит в том, что у автомобиля имеется система подрессоривания, которая изменяет степень демпфирования амортизаторов. Электронный «мозг» автомобиля понимает, когда нужно сделать подвеску мягче или жестче, получив предварительно информацию со специальных датчиков, которые расположены на кузове автомобиля. Они сканируют состояние кузова – его ускорение и перемещение относительно оси, и на основе этих данных изменяют степень демпфирования. Активная подвеска помимо датчиков, имеет в своем составе электронный блок управления и пневмоэлементы в амортизаторах, которые, собственно, и исполняют роль демпферов. В зависимости от конструкции, регулировка работы адаптивной подвески может осуществляться двумя способами: при помощи электромагнитных клапанов или магнитно-реологической жидкости. В первом случае, степень демпфирования активной подвески зависит от силы тока, проходящего через электромагнитный клапан: чем она выше, тем подвеска жестче, и наоборот – чем меньше сила тока, тем подвеска мягче. Эти клапаны монтируются непосредственно на каждом амортизаторе. Подвески с электромагнитными клапанами используются на автомобилях марокVolkswagen, Mercedes-Benz, Toyota, Opel. Во втором случае, степень демпфирования амортизаторов зависит от состояния магнитно-реологической жидкости, которой наполнены корпуса амортизаторов. Принцип действия такого вида подвески заключается в создании электромагнитного сопротивления жидкости в амортизаторах: чем выше это сопротивление, тем больше степень демпфирования и тем жестче настройки подвески. Особого распространения адаптивная подвеска с магнитно-реологической жидкостью не получила: ее устанавливают на автомобили Cadillac, Chevrolet и Audi.

Плюсами этой подвески является возможность минимально снизить крены кузова автомобиля в различных режимах торможения. Минусами адаптивной подвески является сложность ее конструкции, дороговизна обслуживания и ремонта.

Адаптивная подвеска BMW

Адаптивная подвеска Opel

Справочник подвесок: на чем стоим? — журнал За рулем

Еще недавно выделяли лишь типы подвесок — зависимая, «Мак-Ферсон», многорычажная. Непонятные имена появились, когда шасси научились приспосабливаться к дорожным ситуациям и покрытию. Проясним ситуацию.

Agility Control

В подвеске Agility Control у моделей «Мерседес-Бенц» жесткость амортизаторов меняется в зависимости от частоты и амплитуды, с которой перемещается шток.

В подвеске Agility Control у моделей «Мерседес-Бенц» жесткость амортизаторов меняется в зависимости от частоты и амплитуды, с которой перемещается шток.

История адаптивных подвесок

Она начинается в середине 50-х годов прошлого века, когда французская фирма Citroen установила гидропневматику на заднюю ось представительного Traction Avant 15CV6, а чуть позже — на все четыре колеса модели DS. На каждом амортизаторе располагалась сфера, разделенная мембраной на две части, в которых находится рабочая жидкость и подпирающий ее газ под давлением.

В 1989 году появилась модель XM, на которой установили активную гидропневматическую подвеску Hydractiv. Под контролем электроники она подстраивалась под дорожную ситуацию. Сегодня на Citroen работает Hydractiv третьего поколения, причем наряду с обычной версией предлагают и более комфортную с приставкой Plus.

В прошлом веке гидропневматическую подвеску устанавливали не только на «ситроены», но и на дорогие представительские автомобили: Mercedes-Benz, Bentley, Rolls-Royce. Кстати, автомобили, увенчанные трехлучевой звездой, и сейчас не избегают такой схемы.

Active Body и другие системы

Система Active Body Control (активный контроль за кузовом) по конструкции отличается от Hydractiv, но принцип похож: изменяя давление, задают жесткость подвески и дорожный просвет (гидроцилиндры поджимают пружины). Впрочем, у Mercedes-Benz есть и варианты шасси на пневмоподвесках (Airmatik Dual Control), задающие дорожный просвет в зависимости от скорости и загрузки. За жесткостью амортизаторов следит ADS (Adaptive Damping System — система адаптивного демпфирования). А как более доступный вариант покупателям «мерседесов» предлагают подвеску Agility Control с механическими устройствами, регулирующими жесткость.

Volkswagen называет систему, управляющую настройками амортизаторов, DСС (aDaptive Chassis Control — адаптивный контроль за подвеской). Блок управления получает от датчиков данные о перемещении колес и кузова и соответствующим образом изменяет жесткость шасси. Характеристики задают электромагнитные клапаны, установленные на амортизаторах.

Пневмопружины

Пневмопружины позволяют изменять в довольно широких пределах дорожный просвет и плавность хода. Иногда их устанавливают отдельно от амортизатора, но чаще объединяют ради компактности и удобства монтажа, как, например, на «Ауди-А8».

Пневмопружины позволяют изменять в довольно широких пределах дорожный просвет и плавность хода. Иногда их устанавливают отдельно от амортизатора, но чаще объединяют ради компактности и удобства монтажа, как, например, на «Ауди-А8».


Аналогичную адаптивную подвеску применяет Audi, однако на некоторых моделях устанавливают оригинальную систему Audi Magnetic Ride. Демпфирующие элементы заправлены магниторезистивной жидкостью, изменяющей вязкость под действием магнитного поля. Кстати, конструкцию, работающую по такому же принципу, первым применил Cadillac. И название у «американцев» созвучное — Magnetic Ride Control. Вписавшись в эту семью, Volkswagen пока не спешит расставаться с именами собственными. Интеллектуальное шасси от Porsche с амортизаторами, управляемыми электроникой, а на некоторых моделях еще и пневмоподвеской, носит обозначение PASM (Porsche Active Suspension Management — активное управление подвеской). Эффективно бороться с 

Я сделаю это сама. Всё про адаптивные подвески

Давайте сначала разберемся с понятиями, поскольку сейчас в ходу различные термины — активная подвеска, адаптивная... Так вот, мы будем считать, что активная ходовая часть — более общее определение. Ведь изменять характеристики подвесок ради повышения устойчивости, управляемости, избавления от кренов и т.д. можно как превентивно (нажатием кнопки в салоне или ручной регулировкой), так и полностью автоматически.

Именно в последнем случае уместно говорить об адаптивной ходовой. Такая подвеска при помощи различных датчиков и электронных устройств собирает данные о положении кузова автомобиля, качестве дорожного покрытия, параметрах движения, чтобы в результате самостоятельно подстроить свою работу под конкретные условия, стиль пилотирования водителя или же выбранный им режим. Главная и важнейшая задача адаптивной подвески — как можно быстрее определить, что находится под колесами автомобиля и как он едет, а затем мгновенно перестроить характеристики: изменить клиренс, степень демпфирования, геометрию подвески, а иногда даже... скорректировать углы поворота задних колес.

ИСТОРИЯ АКТИВНОЙ ПОДВЕСКИ

Впервые гидропневматическая подвеска была установлена на заднюю ось Citroen Traction Avant 15CVH в 1954 году

Началом истории активной подвески можно считать 50-е годы прошлого века, когда на автомобиле в качестве упругих элементов впервые появились диковинные гидропневматические стойки. Роль традиционных амортизаторов и пружин в такой конструкции выполняют специальные гидpoцилиндры и сферы-гидpoaккумуляторы с газовым подпором. Принцип прост: меняем давление жидкости — меняем параметры ходовой части. В те времена такая конструкция была очень громоздкой и тяжелой, однако в полной мере оправдывала себя высокой плавностью хода и возможностью регулировки дорожного просвета.

Металлические сферы на схеме — это дополнительные (к примеру, в жёстком режиме подвески они не работают) гидропневматические упругие элементы, которые внутри разделены эластичными мембранами. В нижней части сферы — рабочая жидкость, а в верхней — газ азот

Первой гидропневматические стойки на своих автомобилях применила компания Citroen. Это случилось в 1954 г. Французы продолжили развивать эту тему и дальше (например, на легендарной модели DS), а в 90-х годах состоялся дебют более совершенной гидропневматической подвески Hydractive, которую инженеры и по сей день продолжают модернизировать. Вот она-то как раз уже считалась адаптивной, поскольку при помощи электроники могла самостоятельно приспосабливаться к условиям движения: лучше сглаживать толчки, приходящие на кузов, уменьшать клевки при торможении, бороться с кренами в поворотах, а также подстраивать клиренс автомобиля под скорость машины и дорожное покрытие под колесами. Автоматическое изменение жесткости каждого упругого элемента в адаптивной гидропневматической подвеске основывается на управлении давлением жидкости и газа в системе (чтобы предметно понять принцип работы такой схемы подвески, посмотрите видео ниже).

АМОРТИЗАТОРЫ ПЕРЕМЕННОЙ ЖЕСТКОСТИ

И все же с годами гидропневматика не стала проще. Скорее, наоборот. Поэтому логичнее начать рассказ с самого рядового способа адаптации характеристик подвески под дорожное покрытие — индивидуального контроля жесткости каждого амортизатора. Напомним, они необходимы любой машине для гашения колебаний кузова. Типичный демпфер представляет собой цилиндр, разделенный на отдельные камеры эластичным поршнем (иногда их несколько). При срабатывании подвески жидкость перетекает из одной полости в другую. Но не свободно, а через специальные дроссельные клапаны. Соответственно, внутри амортизатора возникает гидравлическое сопротивление, из-за которого раскачка и затухает.

Получается, что, управляя скоростью перетекания жидкости, можно менять и жесткость амортизатора. А значит — серьезно улучшить характеристики автомобиля довольно бюджетными методами. Ведь сегодня регулируемые демпферы выпускаются множеством фирм под самые разные модели машин. Технология отработана.

В зависимости от устройства амортизатора, его регулировка может осуществляться вручную (особым винтом на демпфере или нажатием кнопки в салоне), а также полностью автоматически. Но раз мы говорим об адаптивных подвесках, то будем рассматривать только последний вариант, который обычно еще позволяет регулировать подвеску превентивно — выбором определенного режима движения (к примеру, стандартный набор из трех режимов: Comfort, Normal и Sport).

В современных конструкциях адаптивных амортизаторов применяются два основных инструмента регулирования степени упругости: 1. схема на основе электромагнитных клапанов; 2. при помощи так называемой магнитореологической жидкости.

Обе технологии регулировки жесткости амортизатора работают практически с одинаковым быстродействием и позволяют изменять упругость демпфера бесступенчато. Различия — лишь в нюансах настроек, выбранных под конкретный автомобиль

Обе разновидности позволяют индивидуально автоматически изменять степень демпфирования каждого амортизатора в зависимости от состояния дорожного полотна, параметров движения автомобиля, стиля пилотирования и/или превентивно по желанию водителя. Шасси с адаптивными амортизаторами ощутимо изменяет поведение машины на дороге, но в диапазоне регулирования заметно уступает, например, гидропневматике.

— Как устроен адаптивный амортизатор на основе электромагнитных клапанов?

Если в обычном амортизаторе каналы в движущемся поршне имеют постоянное проходное сечение для равномерного перетекания рабочей жидкости, то у адаптивных амортизаторов оно может изменяться при помощи специальных электромагнитных клапанов. Происходит это следующим образом: электроника собирает множество различных данных (реакции амортизаторов на сжатие/отбой, величину дорожного просвета, ходы подвесок, ускорение кузова в плоскостях, сигнал переключателя режимов и пр.), а затем мгновенно раздает индивидуальные команды на каждый амортизатор: распуститься или зажаться на определенное время и величину.

Так выглядит адаптивный электронноуправляемый амортизатор, работающий в системе DCC от Volkswagen

В этот момент внутри того или иного амортизатора под действием силы тока за считанные миллисекунды изменяется проходное сечение канала, а вместе с тем и интенсивность потока рабочей жидкости. Причем регулировочный клапан с управляющим соленоидом может находиться в разных местах: например, внутри демпфера прямо на поршне, или снаружи сбоку на корпусе.

Технологии и настройки регулируемых амортизаторов с электромагнитными клапанами постоянно совершенствуются, чтобы добиться максимально плавного перехода от жесткого состояния демпфера к мягкому. К примеру, у амортизаторов Bilstein в поршне имеется особый центральный клапан DampTronic, позволяющий бесступенчато снижать сопротивление рабочей жидкости.

— Как устроен адаптивный амортизатор на основе магнитореологической жидкости?

Если в первом случае за регулировку жесткости отвечали электромагнитные клапаны, то в магнитореологических амортизаторах этим ведает, как несложно догадаться, особая магнитореологическая (ферромагнитная) жидкость, которой заполнен амортизатор.

Какими суперсвойствами она обладает? На самом деле, ничего заумного в ней нет: в составе ферромагнитной жидкости можно обнаружить множество мельчайших металлических частиц, которые реагируют на изменение магнитного поля вокруг штока и поршня амортизатора. При увеличении силы тока на соленоиде (электромагните), частицы магнитной жидкости выстраиваются словно солдаты на плацу по линиям поля, а вещество моментально меняет свою вязкость, создавая дополнительное сопротивление перемещению поршня внутри амортизатора, то есть делая его жестче.

Так выглядит и работает магнитореологический амортизатор на Audi TT

Раньше считалось, что процесс изменения степени демпфирования в магнитореологическом амортизаторе проходит быстрее, плавнее и точнее, чем в конструкции с электромагнитным клапаном. Однако на данный момент обе технологии практически сравнялись по эффективности. Поэтому на деле водитель разницы почти не ощущает. Впрочем, в подвесках современных суперкаров (Ferrari, Porsche, Lamborghini), где время реакции на смену условий движения играет значительную роль, устанавливаются именно амортизаторы с магнитореологической жидкостью.

Демонстрация работы адаптивных магнитореологических амортизаторов Magnetic Ride от Audi.

АДАПТИВНАЯ ПНЕВМАТИЧЕСКАЯ ПОДВЕСКА

Конечно же, в ряду адаптивных подвесок особое место занимает пневматическая подвеска, которой по сей день мало что может составить конкуренцию по плавности хода. Конструктивно от обычной ходовой эта схема отличается отсутствием традиционных пружин, поскольку их роль выполняют упругие резиновые баллоны, наполненные воздухом. При помощи электронноуправляемого пневмопривода (система подачи воздуха + ресивер) можно филигранно накачивать или спускать каждую пневматическую стойку, регулируя в автоматическом (или превентивном) режиме высоту каждой части кузова в широких пределах.

А чтобы контролировать жесткость подвески, на пару с пневмобаллонами работают те самые адаптивные амортизаторы (пример такой схемы — Airmatic Dual Control от Mercedes-Benz). В зависимости от конструкции ходовой части, они могут устанавливаться как отдельно от пневмобаллона, так и внутри него (пневматическая стойка).

Кстати, в гидропневматической схеме (Hydractive от Citroen) в обычных амортизаторах необходимости нет, поскольку за параметры жесткости отвечают электромагнитные клапаны внутри стойки, изменяющие интенсивность перетекания рабочей жидкости.

Воздушные упругие элементы могут быть двух типов: установленные вместе с амортизатором (на рисунке слева) или в более простой раздельной конструкции (справа)

АДАПТИВНАЯ ГИДРОПРУЖИННАЯ ПОДВЕСКА

Впрочем, не обязательно сложная конструкция адаптивной ходовой части должна сопровождаться отказом от такого традиционного упругого элемента, как пружина. Инженеры Mercedes-Benz, например, в своем шасси Active Body Control просто-напросто усовершенствовали пружинную стойку с амортизатором, установив на нее специальный гидравлический цилиндр. И в итоге получили одну из самых совершенных адаптивных подвесок из ныне существующих.

Схема гидропружинной подвески Mercedes-Benz Magic Body Control

Основываясь на данных от уймы сенсоров, следящих за перемещением кузова во всех направлениях, а также на показаниях с особых стереокамер (сканируют качество дороги на 15 метров вперед), электроника способна ювелирно корректировать (открытием/закрытием электронных гидроклапанов) жесткость и упругость каждой гидропружинной стойки. В итоге такая система практически полностью исключает крены кузова при самых разнообразных условиях движения: поворот, ускорение, торможение. Конструкция настолько быстро реагирует на обстоятельства, что даже позволила отказаться от стабилизатора поперечной устойчивости.

Ну и конечно, подобно пневматической/гидропневматической подвескам, гидропружинная схема может регулировать положение кузова по высоте, «играть» жесткостью шасси, а также автоматически уменьшать клиренс на высокой скорости, повышая устойчивость автомобиля.

А это видеодемонстрация работы гидропружинной ходовой с функцией сканирования дороги Magic Body Control

Правда, работает гидропружинная подвеска все же немного жестче пневматической и гидропневматической, однако все время модифицируется, вплотную приближаясь к их высоким показателям плавности хода. Взять, к примеру, совсем свежую фишку подвески Active Body Control — функцию обратного наклона кузова в поворотах, с которой познакомился Юрий Урюков во время тест-драйва Mercedes-Benz S-class Coupe (читайте в материале «Яд эгоизма: тест Mercedes-Benz S-class Coupe».

Вкратце напомним принцип ее работы: если стереокамера и датчик поперечных ускорений распознают поворот, то кузов автоматически наклонится на небольшой угол к центру виража (одна пара гидропружинных стоек мгновенно чуть расслабляется, а другая — чуть зажимается). Сделано это, чтобы исключить эффект крена кузова в повороте, повышая комфорт для водителя и пассажиров. Впрочем, на деле положительный результат воспринимает скорее только... пассажир. Поскольку для водителя крены кузова — это некий сигнал, информация, благодаря которой он чувствует и предсказывает ту или иную реакцию машины на маневр. Поэтому, когда система «антикрен» работает, информация приходит с искажением, и водителю приходится лишний раз психологически перестраиваться, теряя обратную связь с автомобилем. Но и с этой проблемой инженеры борются. Например, специалисты из Porsche настроили свою подвеску таким образом, чтобы само развитие крена водитель чувствовал, а убирать нежелательные последствия электроника начинает только при переходе определенной степени наклона кузова.

АДАПТИВНЫЙ СТАБИЛИЗАТОР ПОПЕРЕЧНОЙ УСТОЙЧИВОСТИ

Действительно, вы правильно прочитали подзаголовок, ведь адаптироваться могут не только упругие элементы или амортизаторы, но и второстепенные элементы, как, например, стабилизатор поперечной устойчивости, использующийся в подвеске для уменьшения кренов. Не стоит забывать, что при прямолинейном движении автомобиля по пересеченной местности стабилизатор оказывает скорее негативное воздействие, передавая колебания от одного колеса к другому и уменьшая ходы подвесок... Избежать этого позволил адаптивный стабилизатор поперечной устойчивости, который может выполнять стандартное назначение, полностью отключаться и даже «играть» своей жесткостью в зависимости от величины сил, действующих на кузов автомобиля.

Активный стабилизатор поперечной устойчивости состоит из двух частей, соединенных гидравлическим исполнительным механизмом. Когда специальный электрогидронасос закачивает в его полости рабочую жидкость, то части стабилизатора проворачиваются относительно друг друга, как бы приподнимая ту сторону машины, которая находится под действием центробежной силы

Устанавливают активный стабилизатор поперечной устойчивости как на одну, так и сразу на обе оси. Внешне он практически не отличается от обычного, но состоит не из сплошного прутка или трубы, а из двух частей, состыкованных специальным гидравлическим механизмом «закручивания». Например, при прямолинейном движении он распускает стабилизатор, чтобы последний не вмешивался в работу подвесок. А вот в поворотах или при агрессивной езде — совсем другое дело. В этом случае жесткость стабилизатора моментально увеличивается пропорционально нарастанию бокового ускорения и сил, действующих на автомобиль: упругий элемент работает либо в обычном режиме, либо также постоянно адаптируется под условия. В последнем случае электроника сама определяет, в какую сторону развивается крен кузова, и автоматически «закручивает» части стабилизаторов на той стороне кузова, которая находятся под нагрузкой. То есть под действием этой системы автомобиль немного наклоняется от поворота, как и на вышеупомянутой подвеске Active Body Control, оказывая так называемый эффект «антикрена». Вдобавок активные стабилизаторы поперечной устойчивости, установленные на обеих осях, могут влиять на склонность автомобиля к сносу или заносу.

Настройки активного стабилизатора в системе Porsche Dynamic Chassis Control уменьшают крены, позволяя не терять чувство автомобиля в повороте

В целом, применение адаптивных стабилизаторов существенно улучшает управляемость и устойчивость автомобиля, поэтому даже на самых крупных и тяжелых моделях вроде Range Rover Sport или Porsche Cayenne появилась возможность «вваливать» словно на спорткарах с низким центром тяжести.

ПОДВЕСКА НА ОСНОВЕ АДАПТИВНЫХ ЗАДНИХ РЫЧАГОВ

А вот инженеры из Hyundai в совершенствовании адаптивных подвесок не то, чтобы пошли дальше, а, скорее, выбрали другой путь, сделав адаптивными... рычаги задней подвески! Называется такая система Active Geometry Control Suspension, то есть активный контроль геометрии подвески. В такой конструкции для каждого заднего колеса предусмотрена пара дополнительных рычагов с электроприводами, которые варьируют схождение в зависимости от условий движения.

Работа шасси под названием Hyundai AGCS, основанного на активных задних рычагах

При движении по прямой рычаги не активны и обеспечивают стандартное схождение колес. Однако в вираже или при проезде, к примеру, змейки из конусов, эти звенья подвески мгновенно начинают работать: электроника собирает множество данных (о повороте руля, ускорении кузова и других параметров), а затем при помощи пары электронноуправляемых актуаторов моментально доворачивает то колесо, которое в этот момент находится под нагрузкой.

За счет этого склонность автомобиля к заносу уменьшается. Вдобавок из-за того, что внутреннее колесо доворачивается в повороте, этот хитрый прием одновременно активно борется с недостаточной поворачиваемостью, выполняя функцию так называемого полноуправляемого шасси. На самом деле последнее можно смело записывать к адаптивным подвескам автомобиля. Ведь эта система точно так же подстраивается под различные условия движения, способствуя улучшению управляемости и устойчивости автомобиля.

ПОЛНОУПРАВЛЯЕМОЕ ШАССИ

Впервые полноуправляемое шасси установили почти 30 лет назад на Honda Prelude, однако ту систему нельзя было назвать адаптивной, поскольку она была полностью механическая и напрямую зависела от поворота передних колес. В наше же время всем заведует электроника, поэтому на каждом заднем колесе имеются специальные электромоторы (актуаторы), которыми рулит отдельный блок управления.

Система полноуправляемого шасси P-AWS на Acura

В зависимости от условий маневрирования, он выбирает тот или иной алгоритм для доворота задней пары колес на определенный небольшой угол (в среднем до трех-четырех градусов): на малых скоростях колеса поворачиваются в противофазу с передними для повышения маневренности машины, а на высоких — в одинаковую, способствуя повышению стабильности движения (к примеру, на свежем Porsche 911). Еще, для увеличения эффективности торможения, на особо продвинутых системах (например, у некоторых моделей Acura) колеса даже могут сходиться вместе, как ставит лыжи спортсмен, когда ему нужно замедлиться.

ПЕРСПЕКТИВЫ РАЗВИТИЯ АДАПТИВНЫХ ПОДВЕСОК

На сегодняшний день инженеры пытаются комбинировать все придуманные системы адаптивных подвесок, уменьшая их массу и размеры. Ведь в любом случае главная задача, движущая автомобильными инженерами-подвесочниками, такая: у подвески каждого колеса в каждый момент времени должны быть свои уникальные настройки. И, как мы можем наглядно видеть, многие компании в этом деле довольно сильно преуспели.

Алексей Дергачев

Адаптивная подвеска - что это? Устройство и принцип действия

Адаптивная подвеска одна из самых модных и навороченных тем. Она имеет также же другое название - полуактивная подвеска, и является дальнейшем развитием и разновидностью активной подвески, где амортизаторы изменяют свою степень демпфирования в зависимости от типа и состояния дороги или даже его отсутствия, различных параметров движения, стиля вождения водителя и его запросов. Степенью демпфирования - это быстрота затухания колебаний, зависящая от сопротивления амортизаторов и габаритов и параметров подрессоренных масс. Современные устройства адаптивной подвески предоставляют два метода регулирования степени жёсткости - демпфирования амортизаторов: с применением электромагнитных клапанов и амортизатор, наполненные магнитно-реологической жидкостью.

О первом варианте - с электромагнитным регулировочным клапаном. При регулировании свойств подвески с его помощью, контролируется его проходное сечение в зависимости от того, какой величины тока подающегося на него. Смыл в том, что чем больше напряжение тока, тем меньше так называемое проходное сечение клапана и тогда повышается степень демпфирования амортизатора – подвеска становится жесткой. Или же наоборот, чем слабее напряжение тока, тем больше у клапана становится проходное сечение, как следствие становится ниже степень жёсткости, или демпфирования, и мы получаем мягкую подвеску. Регулировочный клапан инсталлируется к каждому амортизатору и может находиться как внутри, так и снаружи амортизатора. Автомобильные амортизаторы с использованием таких электромагнитных регулировочных клапанов используются в механизмах адаптивных подвесок следующих брендов:
* система Electronic Damper Control, EDC от фирмы BMW, которая идёт в «группешнике» с активной подвеской Adaptive Drive. Всё больше и больше моделей BMW оснащаются такой системой;
* Mercedes-Benz со своим детищем Adaptive Damping System, ADS, которая выпускается в составе известной пневмоподвески Airmatic Dual Control, как и в случае BMW, количество моделей, обладающими данной подвеской, растёт;
* Механизм Continuous Damping Control, CDS от фирмы Opel;
* Адаптивная умная Adaptive Variable Suspension, AVS предлагает компания Toyota;
* и наконец, Volkswagen со своей не менее известной Adaptive Chassis Control, DCC;

Об использовании технологии жидкости на магнитно-реологической основе

Суть применения этой технологии состоит в том, что в составе магнитно-реологической жидкости находятся металлические частицы, которые начинают из-за воздействия магнитного поля вокруг самого амортизатора, где они находятся, выстраиваться вдоль его линий. В таких амортизаторах, заполненных жидкостью магнитно-реологического происхождения, нету привычных клапанов. Ни роль в поршне выполняют специальные каналы, которые помогают жидкости свободно циркулировать. В поршне также вмонтированы соленоиды - электромагнитные катушки. При подаче напряжения тока на эти соленоиды жёсткие частицы в магнитно-реологическом «мокром» составе по линиям магнитного поля выстраиваются и создают мощное сопротивление жидкости, точнее её движению по каналам. В результате чего достигается увеличение степени демпфирования, то есть подвеска становится жёстче, или наоборот - комфортнее. То есть машина имитирует управляемость спорткара, или любимого мягкого дивана на колёсах. Применение магнитно-реологической жидкости в составе адаптивных подвесок используется гораздо реже. Итак, подобную подвеску выпускают:
* General Motors - MagneRide для автомобилей Cadillac, Chevrolet, Например данной системой оснащаются Cadillac Seville STS ещё с первого поколения с 90х годов;
* Audi со своей Magnetic Ride. Оснащаются, например, Audi TT и R8.

Как осуществляется регулирование жёсткости адаптивной подвески

Регулирование необходимой степени жёсткости подвески - демпфирования амортизаторов, обеспечивается ЭБУ системы. Она работает в одной упряжке с входными устройствами, блоком управления и исполнительными механизмами.

Систему управления адаптивной подвески при её работе дополняют такие входные устройства, как сенсоры клиренса автомобиля и ускорения кузова машины во всех направлениях, селектор режимов работы.

С помощью селектора - селектора режимов работы, выбирается нужная настройка степени демпфирования, то есть жёсткости адаптивной подвески. Сенсоры дорожного просвета отвечают за «фиксированность» величины хода подвески, причём как на сжатие, так и на отбой. Сенсор ускорения кузова вычисляет «ускоряемость» кузова автомобиля по вертикальной плоскости, порой в некоторых моделях и в горизонтальной. Количество и перечень датчиков (сенсоров) различается в зависимости от конкретной модели, от конструкции адаптивной подвески. К примеру, Volkswagen в свою подвеску DCC два сенсора дорожного просвета и три сенсора ускорения кузова. Два находятся спереди автомобиля и один сзади.

В ЭБУ поступают сигналы от сенсоров, где в соответствии с конкретной заложенной программой и начинается их обработка и дальнейшее формирование основанная на них управляющих сигналов, которые уже поступают на исполнительные устройства, к таким как электрорегулировочные электромагнитные клапаны или соленоиды (электромагнитные катушки). Однако, блок управления продвинутых версий адаптивной подвески при своей работе активно взаимодействует также с остальными системами автомобиля. К примеру с такими, как усилитель рулевого управления, автоматика тормозной системы, автоматическая трансмиссия, система управления двигателем и другими.

Как правило, конструкция адаптивной подвески предусматривает три встроенных режима работы: это распространённый трио - нормальный, спортивный и комфортный. Ну а в некоторых случаях есть дополнительные режимы, скорее под-режимы, например нормальный, полуспортивный, и «настоящий» спортивный и т.д.

Водителем может выбирать режимы и управлять ими в зависимости от потребности. И естественно в новых подвесках каждый режим осуществляет регулирование степени жёсткости автоматически, то есть необходимого демпфирования амортизаторов в пределах установленных параметрических характеристиках.

Показания сенсоров ускорения кузова прямо зависят от качества дорожного покрытия. В итоге, на дороге чем больше неровностей, тем активнее кузов автомобиля раскачивается. В соответствии с этим «мозги» системы управления выбирают и настраивают степень жёсткости амортизаторов.

Роль сенсоров дорожного просвета состоит в отслеживании текущей ситуации при движении автомобиля - торможении, ускорении, поворотах. Например, при торможениях клюёт носом - передняя часть автомобиля всегда опускается ниже задней, а при ускорении – происходит всё наоборот. Здесь принцип в том, что для обеспечения постоянного горизонтального положения кузова система регулирует уровень демпфирования амортизаторов спереди и сзади, которые будет различаться для каждой оси соответственно. При поворотах же из-за воздействия инерционной силы одна сторона автомобиля всегда оказывается выше/ниже другой. В этом случае «мозги» адаптивной подвески берут на себя обязанность раздельно регулировать и управлять правые и левые амортизаторы, то есть при правом повороте, когда правый бок стремится подниматься в воздух, то левые амортизаторы становятся жёстче. Чем и достигается устойчивость при прохождении поворотов.

Таким образом, на основании полученных сигналов сенсоров в блок управления формируются управляющие сигналы отдельно для каждого амортизатора, что позволяет добиться максимальной комфортности, спортивности и безопасности для каждого из выбранных на данный момент режимов.

Адаптивная подвеска. — DRIVE2

Полный размер

Как известно, автопроизводители постоянно совершенствуют выпускаемые автомобили, стараясь улучшить их безопасность, практичность и повысить уровень комфорта при езде. И именно к уровню комфорта всегда было повышенное внимание. Всем известно, что за комфорт отвечает подвеска автомобиля, которая должна обеспечивать максимальное сцепление с дорожным покрытием и при этом обязана компенсировать все неровности. Однако стандартная подвеска, которой укомплектованы практически все бюджетные автомобили может обеспечить либо комфорт на неровной дороге, либо хорошую управляемость на трассе.

Постоянные совершенствования и внедрение новых технологий позволили автопроизводителям создать подвеску совершенно нового уровня, которая была названа адаптивной или активной. Собственно новшеством это назвать нельзя, потому как первая адаптивная подвеска была установлена французами на автомобили Citroen и представляла собой гидропневматическую систему. Концерн Mercedes-Benz также устанавливал на свои автомобили адаптивные подвески на основе гидропневматики. Тем не менее, если ранее адаптивная подвеска была громоздка и примитивна в плане функционала, то сегодня она стала намного компактнее, функциональнее, но и устройство ее также усложнилось.

Активная подвеска имеет массу преимуществ:

• способность самостоятельно в автоматическом режиме подстраиваться под любое дорожное покрытие;
• адаптация к стилю вождения;
• принудительная регулировка демпфирования;
• уменьшение кренов кузова и, следовательно, лучшая маневренность;
• и, конечно же, повышенный уровень безопасности.

Устройство и принцип работы адаптивной подвески:

Адаптация к дорожным условиям и стилю вождения может обеспечиваться при помощи различных систем и устройств. На разных автомобилях применяются отличные друг от друга адаптивные подвески, однако предназначение и общий принцип действия остаются неизменными. В состав адаптивной подвески могут входить следующие элементы:

• активные (регулируемые) стойки амортизаторов;
• регулируемые стабилизаторы поперечной устойчивости;
• датчики ускорения, дорожного просвета, неровной дороги и прочие;
• электронный блок управления подвеской.

Активные стойки амортизаторов предназначены для динамического изменения жесткости подвески в зависимости от дорожного покрытия и ситуации на дороге. Амортизаторы могут иметь различную конструкцию. Из разновидностей встречаются стойки, оснащенные специальным электромагнитным клапаном с переменным сечением. Электронный блок управления подает напряжение разной величины на клапан амортизатора изменяя тем самым его проходное сечение, вследствие чего подвеска становится более жестче или мягче. Причем регулировка может осуществляться как на всех амортизаторах синхронно, так и для каждого индивидуально. Однако клапан – не единственное решение. Амортизатор может иметь стандартную конструкцию, которая заполнена особой рабочей жидкостью, меняющей вязкость под воздействием электромагнитных полей.

Существуют также адаптивные подвески с активными стабилизаторами поперечной устойчивости. Регулируемые стабилизаторы также получают команды от блока управления и меняют свою жесткость, тем самым уменьшая крены автомобиля при маневрировании на больших скоростях. Современные адаптивные подвески имеют довольно сложную и быстродействующую систему управления, которая способна получать, обрабатывать сигналы и посылать управляющие команды к исполнительным элементам за доли секунд, что позволяет менять характеристики мгновенно.

Стойки амортизатора и активные стабилизаторы относятся к исполнительным элементам адаптивной подвески. Однако для того чтобы исполнительные элементы могли выполнять свои функции, они должны получать для этого команды в нужное время. Управляет подвеской собственный электронный блок, который получает сигналы от многочисленных датчиков (автоматический режим) или от блока ручного контроля в салоне автомобиля (ручной режим). Водитель может самостоятельно установить требуемый режим подвески, и блок управления незамедлительно настроит соответствующим образом все исполнительные механизмы.

Полный размер

Сообщества › Club Mercedes-Benz (Новосибирск) › Блог › Я сделаю это сама. Всё про адаптивные подвески

Настройки ходовой части обычного дорожного автомобиля — это, как правило, компромисс. И не всегда удачный. Но делать уступки не имеет смысла, если подвески умеют менять свои параметры прямо в движении

Давайте сначала разберемся с понятиями, поскольку сейчас в ходу различные термины — активная подвеска, адаптивная… Так вот, мы будем считать, что активная ходовая часть — более общее определение. Ведь изменять характеристики подвесок ради повышения устойчивости, управляемости, избавления от кренов и т.д. можно как превентивно (нажатием кнопки в салоне или ручной регулировкой), так и полностью автоматически.
Именно в последнем случае уместно говорить об адаптивной ходовой. Такая подвеска при помощи различных датчиков и электронных устройств собирает данные о положении кузова автомобиля, качестве дорожного покрытия, параметрах движения, чтобы в результате самостоятельно подстроить свою работу под конкретные условия, стиль пилотирования водителя или же выбранный им режим. Главная и важнейшая задача адаптивной подвески — как можно быстрее определить, что находится под колесами автомобиля и как он едет, а затем мгновенно перестроить характеристики: изменить клиренс, степень демпфирования, геометрию подвески, а иногда даже… скорректировать углы поворота задних колес.
ИСТОРИЯ АКТИВНОЙ ПОДВЕСКИ
Я сделаю это сама. Всё про адаптивные подвески — Фото 1
Впервые гидропневматическая подвеска была установлена на заднюю ось Citroen Traction Avant 15CVH в 1954 году
Началом истории активной подвески можно считать 50-е годы прошлого века, когда на автомобиле в качестве упругих элементов впервые появились диковинные гидропневматические стойки. Роль традиционных амортизаторов и пружин в такой конструкции выполняют специальные гидpoцилиндры и сферы-гидpoaккумуляторы с газовым подпором. Принцип прост: меняем давление жидкости — меняем параметры ходовой части. В те времена такая конструкция была очень громоздкой и тяжелой, однако в полной мере оправдывала себя высокой плавностью хода и возможностью регулировки дорожного просвета.
Я сделаю это сама. Всё про адаптивные подвески — Фото 2
Металлические сферы на схеме — это дополнительные (к примеру, в жёстком режиме подвески они не работают) гидропневматические упругие элементы, которые внутри разделены эластичными мембранами. В нижней части сферы — рабочая жидкость, а в верхней — газ азот
Первой гидропневматические стойки на своих автомобилях применила компания Citroen. Это случилось в 1954 г. Французы продолжили развивать эту тему и дальше (например, на легендарной модели DS), а в 90-х годах состоялся дебют более совершенной гидропневматической подвески Hydractive, которую инженеры и по сей день продолжают модернизировать. Вот она-то как раз уже считалась адаптивной, поскольку при помощи электроники могла самостоятельно приспосабливаться к условиям движения: лучше сглаживать толчки, приходящие на кузов, уменьшать клевки при торможении, бороться с кренами в поворотах, а также подстраивать клиренс автомобиля под скорость машины и дорожное покрытие под колесами. Автоматическое изменение жесткости каждого упругого элемента в адаптивной гидропневматической подвеске основывается на управлении давлением жидкости и газа в системе (чтобы предметно понять принцип работы такой схемы подвески, посмотрите видео ниже).

АМОРТИЗАТОРЫ ПЕРЕМЕННОЙ ЖЕСТКОСТИ
И все же с годами гидропневматика не стала проще. Скорее, наоборот. Поэтому логичнее начать рассказ с самого рядового способа адаптации характеристик подвески под дорожное покрытие — индивидуального контроля жесткости каждого амортизатора. Напомним, они необходимы любой машине для гашения колебаний кузова. Типичный демпфер представляет собой цилиндр, разделенный на отдельные камеры эластичным поршнем (иногда их несколько). При срабатывании подвески жидкость перетекает из одной полости в другую. Но не свободно, а через специальные дроссельные клапаны. Соответственно, внутри амортизатора возникает гидравлическое сопротивление, из-за которого раскачка и затухает.

Я сделаю это сама. Всё про адаптивные подвески — Фото 3
Получается, что, управляя скоростью перетекания жидкости, можно менять и жесткость амортизатора. А значит — серьезно улучшить характеристики автомобиля довольно бюджетными методами. Ведь сегодня регулируемые демпферы выпускаются множеством фирм под самые разные модели машин. Технология отработана.
Я сделаю это сама. Всё про адаптивные подвески — Фото 4
В зависимости от устройства амортизатора, его регулировка может осуществляться вручную (особым винтом на демпфере или нажатием кнопки в салоне), а также полностью автоматически. Но раз мы говорим об адаптивных подвесках, то будем рассматривать только последний вариант, который обычно еще позволяет регулировать подвеску превентивно — выбором определенного режима движения (к примеру, стандартный набор из трех режимов: Comfort, Normal и Sport).
В современных конструкциях адаптивных амортизаторов применяются два основных инструмента регулирования степени упругости: 1. схема на основе электромагнитных клапанов; 2. при помощи так называемой магнитореологической жидкости.
Я сделаю это сама. Всё про адаптивные подвески — Фото 5
Обе технологии регулировки жесткости амортизатора работают практически с одинаковым быстродействием и позволяют изменять упругость демпфера бесступенчато. Различия — лишь в нюансах настроек, выбранных под конкретный автомобиль
Обе разновидности позволяют индивидуально автоматически изменять степень демпфирования каждого амортизатора в зависимости от состояния дорожного полотна, параметров движения автомобиля, стиля пилотирования и/или превентивно по желанию водителя. Шасси с адаптивными амортизаторами ощутимо изменяет поведение машины на дороге, но в диапазоне регулирования заметно уступает, например, гидропневматике.
— Как устроен адаптивный амортизатор на основе электромагнитных клапанов?
Я сделаю это сама. Всё про адаптивные подвески — Фото 6
Если в обычном амортизаторе каналы в движущемся поршне имеют постоянное проходное сечение для равномерного перетекания рабочей жидкости, то у адаптивных амортизаторов оно может изменяться при помощи специальных электромагнитных клапанов. Происходит это следующим образом: электроника собирает множество различных данных (реакции амортизаторов на сжатие/отбой, величину дорожного просвета, ходы подвесок, ускорение кузова в плоскостях, сигнал переключателя режимов и пр.), а затем мгновенно раздает индивидуальные команды на каждый амортизатор: распуститься или зажаться на определенное время и величину.
Я сделаю это сама. Всё про адаптивные подвески — Фото 7
Так выглядит адаптивный электронноуправляемый амортизатор, работающий в системе DCC от Volkswagen
В этот момент внутри того или иного амортизатора под действием силы тока за считанные миллисекунды изменяется проходное сечение канала, а вместе с тем и интенсивность потока рабочей жидкости. Причем регулировочный клапан с управляющим соленоидом может находиться в разных местах: например, внутри демпфера прямо на поршне, или снаружи сбоку на корпусе.

Технологии и настройки регулируемых амортизаторов с электромагнитными клапанами постоянно совершенствуются, чтобы добиться максимально плавного перехода от жесткого состояния демпфера к мягкому. К примеру, у амортизаторов Bilstein в поршне имеется особый центральный клапан DampTronic, позволяющий бесступенчато снижать сопротивление рабочей жидкости.
Я сделаю это сама. Всё про адаптивные подвески — Фото 8
— Как устроен адаптивный амортизатор на основе магнитореологической жидкости?
Если в первом случае за регулировку жесткости отвечали электромагнитные клапаны, то в магнитореологических амортизаторах этим ведает, как несложно догадаться, особая магнитореологическая (ферромагнитная) жидкость, которой заполнен амортизатор.
Я сделаю это сама. Всё про адаптивные подвески — Фото 9
Какими суперсвойствами она обладает? На самом деле, ничего заумного в ней нет: в составе ферромагнитной жидкости можно обнаружить множество мельчайших металлических частиц, которые реагируют на изменение магнитного поля вокруг штока и поршня амортизатора. При увеличении силы тока на соленоиде (электромагните), частицы магнитной жидкости выстраиваются словно солдаты на плацу по линиям поля, а вещество моментально меняет свою вязкость, создавая дополнительное сопротивление перемещению поршня внутри амортизатора, то есть делая его жестче.
Я сделаю это сама. Всё про адаптивные подвески — Фото 10
Так выглядит и работает магнитореологический амортизатор на Audi TT
Раньше считалось, что процесс изменения степени демпфирования в магнитореологическом амортизаторе проходит быстрее, плавнее и точнее, чем в конструкции с электромагнитным клапаном. Однако на данный момент обе технологии практически сравнялись по эффективности. Поэтому на деле водитель разницы почти не ощущает. Впрочем, в подвесках современных суперкаров (Ferrari, Porsche, Lamborghini), где время реакции на смену условий движения играет значительную роль, устанавливаются именно амортизаторы с магнитореологической жидкостью.

Демонстрация работы адаптивных магнитореологических амортизаторов Magnetic Ride от Audi.
АДАПТИВНАЯ ПНЕВМАТИЧЕСКАЯ ПОДВЕСКА
Конечно же, в ряду адаптивных подвесок особое место занимает пневматическая подвеска, которой по сей день мало что может составить конкуренцию по плавности хода. Конструктивно от обычной ходовой эта схема отличается отсутствием традиционных пружин, поскольку их роль выполняют упругие резиновые баллоны, наполненные воздухом. При помощи электронноуправляемого пневмопривода (система подачи воздуха + ресивер) можно филигранно накачивать или спускать каждую пневматическую стойку, регулируя в автоматическом (или превентивном) режиме высоту каждой части кузова в широких пределах.
Я сделаю это сама. Всё про адаптивные подвески — Фото 11
А чтобы контролировать жесткость подвески, на пару с пневмобаллонами работают те самые адаптивные амортизаторы (пример такой схемы — Airmatic Dual Control от Mercedes-Benz). В зависимости от конструкции ходовой части, они могут устанавливаться как отдельно от пневмобаллона, так и внутри него (пневматическая стойка).
Я сделаю это сама. Всё про адаптивные подвески — Фото 12
Кстати, в гидропневматической схеме (Hydractive от Citroen) в обычных амортизаторах необходимости нет, поскольку за параметры жесткости отвечают электромагнитные клапаны внутри стойки, изменяющие интенсивность перетекания рабочей жидкости.
Я сделаю это сама. Всё про адаптивные подвески — Фото 13
Воздушные упругие элементы могут быть двух типов: установленные вместе с амортизатором (на рисунке слева) или в более простой раздельной конструкции (справа)

АДАПТИВНАЯ ГИДРОПРУЖИННАЯ ПОДВЕСКА
Я сделаю это сама. Всё про адаптивные подвески — Фото 14
Впрочем, не обязательно сложная конструкция адаптивной ходовой части должна сопровождаться отказом от такого традиционного упругого элемента, как пружина. Инженеры Mercedes-Benz, например, в своем шасси Active Body Control просто-напросто усовершенствовали пружинную стойку с амортизатором, установив на нее специальный гидравлический цилиндр. И в итоге получили одну из самых совершенных адаптивных подвесок из ныне существующих.
Я сделаю это сама. Всё про адаптивные подвески — Фото 15
Схема гидропружинной подвески Mercedes-Benz Magic Body Control
Основываясь на данных от уймы сенсоров, следящих за перемещением кузова во всех направлениях, а также на показаниях с особых стереокамер (сканируют качество дороги на 15 метров вперед), электроника способна ювелирно корректировать (открытием/закрытием электронных гидроклапанов) жесткость и упругость каждой гидропружинной стойки. В итоге такая система практически полностью исключает крены кузова при самых разнообразных условиях движения: поворот, ускорение, торможение. Конструкция настолько быстро реагирует на обстоятельства, что даже позволила отказаться от стабилизатора поперечной устойчивости.
Я сделаю это сама. Всё про адаптивные подвески — Фото 16
Ну и конечно, подобно пневматической/гидропневматической подвескам, гидропружинная схема может регулировать положение кузова по высоте, «играть» жесткостью шасси, а также автоматически уменьшать клиренс на высокой скорости, повышая устойчивость автомобиля.

А это видеодемонстрация работы гидропружинной ходовой с функцией сканирования дороги Magic Body Control
Правда, работает гидропружинная подвеска все же немного жестче пневматической и гидропневматической, однако все время модифицируется, вплотную приближаясь к их высоким показателям плавности хода. Взять, к примеру, совсем свежую фишку подвески Active Body Control — функцию обратного наклона кузова в поворотах, с которой познакомился Юрий Урюков во время тест-драйва Mercedes-Benz S-class Coupe (читайте в материале «Яд эгоизма: тест Mercedes-Benz S-class Coupe».
Я сделаю это сама. Всё про адаптивные подвески — Фото 17
Вкратце напомним принцип ее работы: если стереокамера и

Она вам не «пневма»! Адаптивная ходовая часть М — BMW 3 series, 2.0 л., 2014 года на DRIVE2

Полный размер

Выбрав по номеру последнюю, доступную на день приобретения, ревизию блока управления VDC, был запущен интереснейший процесс подбора соответствующих деталей для очередного ретрофита.

Адаптивная ходовая часть М (S2VFA)
За долгие четыре с половиной года владения «тройкой» пробег перевалил за отметку в 80.000 км и на протяжении этого времени было понятно, что рано или поздно встанет вопрос с заменой амортизаторов и/или пружин. Они, как и многое на этом свете, совсем не вечные. Но разве удовольствие за рулём должно зависеть от возраста автомобиля? Задача вырисовывалась простая: обновить подвеску, не продать душу Koni Sport / Eibach Pro-Kit и, желательно, добавить в комплектацию автомобиля очередную заводскую опцию.

После установки и кодирования адаптивной подвески не сразу понимаешь, что происходит с автомобилем. Новые амортизаторы с пружинами, включая сопутствующие всему этому мелочи, вводят в заблуждение: ощущения настолько комфортные — как от езды на абсолютно новом автомобиле. Электронная система регулировки жесткости амортизаторов активируется при скорости движения выше 3 км/ч, то есть практически сразу. В спортивном режиме, не смотря на некоторые опасения, не доставляет ни малейшего дискомфорта. Видимо, подготовительный курс на ранфлэте 19 диаметра длиною в несколько лет не прошел даром. Стыки и заметные изъяны дорожного полотна отрабатываются подвеской упруго. Если выбрать правильную скорость, ни намёка на пробой стоек. Лежачие полицейские автомобиль тоже перелазит комфортнее, чем на стандартной подвеске — нет тяжёлых провалов «морды», которые бывало случались раньше. Вынужденные перестроения (внезапные препятствия, непреодолимые дефекты дорожного покрытия) на высоких скоростях наконец-то начали нравиться, а не пугать — теперь нет расхлябанности и желейной болтанки. Через небольшой пробег пружины усядутся и к приятным ощущениям должен добавиться ещё и вызывающий уважение вид.

Ну, и подробности в студию!
Начало адаптивной подвеске было положено ещё во времена установки активного круиз-контроля с функцией Stop&Go, когда в автомобиле появился блок управления ICM high, поддерживающий также опцию S2VFA — Адаптивная ходовая часть M. За шоппинг-листом я обратился к nik-35x, который к тому моменту уже был практически на грани установки своей адаптивной подвески. С небольшими изменениями и дополнениями мой список получился следующим:

Передний мост
Амортизационная стойка Л Пд — 37 11 6 793 869
Амортизационная стойка П Пд — 37 11 6 793 870
Витая пружина передняя (2 шт.) — 31 33 6 851 921
Верхняя опора амортизационной стойки (2 шт.) — 31 30 6 881 930
Кабель-адаптер датчика (2 шт.) — 37 14 6 793 848
Переходный провод VDC (2 шт.) — 37 14 6 793 850
Дополнительный амортизатор Пд (2 шт.) — 31 33 6 791 507
Изол. прокладка пружины с защ. трубкой Вх (2 шт.) — 31 30 6 791 712
Изолирующ. прокладка пружины Нж (2 шт.) — 31 33 6 787 114
Уплотнительная шайба (2 шт.) — 31 30 6 868 240
Болт с шестигранной головкой с шайбой (10 шт.) — 31 30 6 869 931
Болт с шестигранной головкой с фланцем (2 шт.) — 31 30 6 798 530
Гайка с буртиком самоконтрящаяся (4 шт.) — 33 32 6 760 668
Гайка шестигранная (2 шт.) — 07 11 9 905 032
Держатель провода (6 шт.) — 34 52 1 164 653

Задний мост
Амортизатор Зд (2 шт.) — 37 12 6 793 877
Витая пружина Зд (2 шт.) — 33 53 6 855 544
Верхняя опора амортизационной стойки (2 шт.) — 33 50 6 862 725
Переходный провод EDC (2 шт.) — 37 14 6 852 924
Дополнительный амортизатор Зд (2 шт.) — 33 53 6 854 701
Уплотнительная прокладка (2 шт.) — 33 50 6 866 038
Защитный колпак (2 шт.) — 33 50 6 791 708
Изолирующ. прокладка пружины Нж (2 шт.) — 33 53 6 791 709
Изолирующ. прокладка пружины Вх (2 шт.) — 33 53 6 764 419
Тарелка пружины (2 шт.) — 41 14 7 057 297
Пластмассовая гайка (2 шт.) — 16 13 1 176 747
Болт со звездообр. гол. и мал. Фланцем (6 шт.) — 07 11 9 907 137
Гайка с буртиком самоконтрящаяся (2 шт.) — 33 32 6 760 668

Дополнительно
Блок управления ICM high — 34 52 6 864 211
Блок управления VDC — 37 14 6 888 037
Защитный колпак (47 POL.) — 61 13 6 925 571
Корпус розетки — 61 13 6 925 558
Рем. комплект гнездового корпуса 3 POL. (2 шт.) — 61 13 2 359 998
Рем. комплект гнездового корпуса 2 POL. (4 шт.) — 61 13 2 359 999

Однако, стоит понимать, что список для каждого отдельно взятого автомобиля зависит от многих факторов, поэтому не стоит слепо следовать написанному.

Полный размер

Для блока управления VDC понадобится непростой такой разъем. Он состоит из двух частей — защитный колпак и корпус розетки (см. список выше), но я нашёл и приютил безродный разъем в ЕвроАвто — отзывается на артикул внешней части: 61 13 6 925 571.

Для переднего моста понадобятся амортизационные стойки, проводка, крепёж для проводов, верхняя опора для амортизаторов и мелочёвка в виде дополнительных амортизаторов, уплотнителей и болтов.

Для заднего моста похожий набор. Отличия в мелочах.

Если приобретать б/у составляющие адаптивной подвески с небольшим пробегом, то можно существенно сэкономить бюджет — ещё останутся деньги на китайские ноздри или накладки педалей с алиэкспресс. Но поскольку решётки радиатора мне подарили, а накладки педалей я приобрел и установил весной, то кроить смысла не было. Заказал абсолютно новые амортизационные стойки, комплекты новых пружин и практически всё остальное тоже новое, кроме блока управления подвеской и разъема к нему. Это две детали, на которых сэкономить не стыдно.

Полный размер

Амортизационные стойки адаптивной подвески. Передние идут в комплекте с датчиками ускорения.

Полный размер

Для подбора правильных пружин важно уточнить наличие различных опций в автомобиле.

Полный размер

Пружины передние и задние.

Полный размер

Верхние опоры амортизационных стоек передние и задние.

Полный размер

Дополнительные амортизаторы передние и задние.

Полный размер

Набор из шести проводов — по два на каждый передний амортизатор и по одному на каждый задний.

Полный размер

Рем. комплекты гнездового корпуса для подключения проводов с предыдущих фотографий к блоку управления адаптивной подвеской VDC. Кстати, к нему придется проложить десятки метров разноцветных проводов разного сечения от каждого амортизатора. Блок располагается в правой нише багажника, поэтому проводов нужно очень много.


Смотрите также